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H I G H L I G H T S

• Finite analytic method, which based on
Kirchhoff transform, is developed to
simulate variably saturated flow.

• The stability of FAM has been proven by
a rigorous mathematical analysis.

• Finite analytic method is not only accu-
rate but also efficient, when compared
with other numerical methods.
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This paper develops a finite analyticmethod (FAM) for solving the two-dimensional Richards' equation. The FAM
incorporates the analytic solution in local elements to formulate the algebraic representation of the partial differ-
ential equation of unsaturatedflow so as to effectively control both numerical oscillation anddispersion. The FAM
model is then verified using four examples, in which the numerical solutions are compared with analytical solu-
tions, solutions fromVSAFT2, and observational data from afield experiment. These numerical experiments show
that the method is not only accurate but also efficient, when compared with other numerical methods.
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1. Introduction

The process of water movement in the vadose zone is important in
agricultural and environmental engineering, soil science, theoretical
and applied hydrology as well as water resource management (Melloul

and Wollman, 2003; Serrano, 2004; Narula and Gosain, 2013; Bachand
et al., 2014; Cleverly et al., 2016; Li et al., 2017). Experiments and math-
ematical modeling are two effective approaches to study the process.
While field experiments (Wang et al., 2011) allow actual observations
of the processes in the vadose zone, they are expensive, tedious and
time-consuming to implement, and they cannot be used to forecast the
processes under different stresses. On the other hand, mathematical
modeling is built uponmathematical equations that represent the phys-
ics of nature flow processes. The parameters, boundary and initial
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conditions, and source and sink terms can be altered at relative ease to
reflect different conditions in the field. Therefore, mathematical model-
ing is a versatile approach for understanding the flow processes,
predicting flow processes, and assessing the uncertainty associated
with model predictions due to uncertainty in various model parameters
(Yeh et al., 1993a, 1993b; Yeh and Zhang, 1996; Yeh and Simunek, 2002;
Wu et al., 2010; Wang et al., 2015; Gholami et al., 2015; Taormina and
Chau, 2015, Yeh et al., 2015 book).

Richards' equation has been generally accepted as the appropriate
mathematical model for describing flow processes in the vadose zone.
However, it is difficult to derive analytical solutions of the equationwith-
outmaking some simplifications due to the nonlinearity of this equation.
Numerical solutions to Reichards' equation thus become the alternative.
Generally, Richards' equation can be formulated in terms of moisture
content, or pressure head, or both moisture content ad pressure head
(a mixed formulation, see Yeh et al., 2015 book). The pressure-head
based Richards' equation has been widely used to simulate variably sat-
urated flow in geologic materials (e.g., Srivastava and Yeh, 1992; Yeh et
al., 1993a, 1993b; Zhang and Yeh, 1997; Li and Yeh, 1999; Hughson
and Yeh, 2000; Therrien and Sudicky, 2000; Mayer et al., 2002;
Shahrokhabadi et al., 2017). Numerical difficulties associated with solv-
ing the pressure-head based Richards' equation exist. For example,
when water infiltrates into very dry soils, one may encounter mass-bal-
ance error and solution convergence problems (Hao et al., 2005; Lai and
Ogden, 2015). Specifically, the numerical treatment of the time deriva-
tive term in the pressure-head based equation often yield solutions
with poor mass balance. That is, while the time derivative the pressure
head in the equation (i.e., CðhÞ ∂h∂t) and the time derivative of moisture

content (∂θ∂t) are mathematically equivalent in the continuous partial dif-

ferential equation, the numerical approximation of CðhÞ ∂h∂t may lead to
large computational errors due to high nonlinearity of C(h). These errors
cause the mass balance error to grow with increasing time-step size.

To overcome this problem, Rathfelder andAbriola (1994) presented a
chord slope approximation to evaluate the soil moisture capacity (C(h)).
Kavetski et al. (2002) proposed a non-iterative implicit time-stepping
scheme with an adaptive truncation error control to solve for pressure
head based on Richards' equation.

As for the moisture-content based Richards' equation, the nonlinear-
ity in hydraulic diffusivity D(θ) and that in hydraulic conductivity k(θ)
are less strong than those in K(h) and C(h) in the pressure-head based
equation. In addition, the term ∂θ/∂t rather than the term C(h)∂h/∂t is
used in the moisture-based Richards' equation, and thus the numerical
difficulties associated with C(h)∂h/∂t do not exist. Hence, the mass bal-
ance error in the solution of the moisture-based Richards' equation is
small, and this equation is highly suited for modeling infiltration into
an initially dry soil. However, the moisture content–based equation
also encounters some serious limitations. For example, it cannot simulate
water flowing in a saturated zone, since the water diffusivity term be-
comes infinite andmoisture content becomes a constant. It cannot be ap-
plied to layered soils since the moisture content is not continuous at the
interfaces between different soil types. Likewise, it cannot be used for
heterogeneous soils because the moisture is the surrogate of the water
energy only under homogeneous soils (see Yeh et al., 2015).

To deal with the discontinuity of soil moisture in moisture content
form Richard's equation, Matthews et al. (2004, 2005) extended the
moisture content form Richards' equation to layered soil profiles using
the Method of Lines (MoL). The MoL method solves the soil moisture
discontinuity by considering the flow dynamics within each soil layer
separately. Then, the discontinuity is dealtwith bymeans of expressions
that satisfy the continuity of flux and pressure head at the interface.
Schaudt and Morrill (2002) solved the moisture content form Richards'
equation in heterogeneous soils using the continuity of flux and pres-
sure head as boundary conditions. The results show that the method
yields excellent water balance and converges as fast as in homogeneous
soils.

The mixed form Richards' equation can minimize the mass bal-
ance errors by using Picard iteration scheme (Celia et al., 1990;
Zha et al., 2017). This form has been implemented in many litera-
ture (Yakirevich et al., 1998; Vogel et al., 2001; Yang et al., 2009).
But, it is well known that when the pressure head considered as
the primary variable, the mixed form Richards' equation performs
poorly, especially for problems involving water infiltration into ini-
tially dry materials (Forsyth et al., 1995). Moreover, the numerical
solution for sharp wetting front can be computationally expensive
without adaptive spatial and temporal discretization (Miller et al.,
2006). To overcome these problems, the primary variable switching
technique proposed (Krabbenhoft, 2007), where the pressure head
or soil moisture is used as primary variable relying on the degree of
saturation at each node.

As a matter of the fact, the main difficulty in solving the highly non-
linear Richards' equation stems from its hyperbolic characteristic, despite
its parabolic form, in terms of the degree of saturation in the solution do-
main (Ji et al., 2008). To overcome this problem, Ross and Bristow (1990)
and Ross (2003) used the Kirchhoff transform to linearize Richards'
equationwith specific constitutive relationships. By Kirchhoff transform,
the nonlinear hyperbolic characteristic of Richards' equation is separated
from the parabolic part in each iterative solution stage. Besides, Ross and
Bristow (1990) pointed out that the Kirchhoff transformation can be
used to eliminate the square of the first derivatives which is in the ex-
panded Richards' equation. In the vicinity of the sharp wetting front,
the first derivative requires very small space and time increments.More-
over, using Kirchhoff transformation makes the equation easier to solve
numerically than the mixed and pressure-head forms of Richards' equa-
tion. It is also different from the saturated-based form as it can be applied
to the fully saturated conditions. Therefore, several authors have devel-
oped algorithms based on Kirchhoff transformation to solve this form
of Richards' equation (Vauclin et al., 1979; Ji et al., 2008; Zhang et al.,
2015).

Moreover, the Kirchhoff transform can be a tool to approximate the
effective conductivity between the adjacent nodes (Szymkiewicz,
2013). Vauclin et al. (1979) pointed out that the discretized equation
after transformation does not require the estimation of the coefficient
K at the intermodal calculation points where the solution is unknown.
Additionally, because of its integral nature, variations in the U function
are much smaller than those in h. This reduces the numerical errors
that are with the discretization.

Because of these advantages, Zhang et al. (2015) first introduced
finite analytic method (FAM), which applied for Kirchhoff trans-
form, to solve the one-dimensional (1D) unsaturated flow equa-
tion. Results showed that FAM can obtain a relatively good mass
balance.

FAM was first developed to solve the Navier-Strokes equation
(Chen et al., 1981). Solutions utilizing FAM are characterized by an
automatic localized upstream shift and an analytic property,
which can either eliminate or suppress the difficulty of overall nu-
merical dispersion for large Peclet numbers. To obtain more accu-
rate numerical solutions and better control the global mass
balance, Zhang et al. (2016) developed FAM to solve the 1D
mixed-form Richard's equation.

In this paper, we applied a more general form of FAM to simulate
two-dimensional (2D) variably saturated flow. To evaluate the numeri-
cal performance of FAM, several problems typical of variably saturated
flow from the literature were simulated using FAM and Variably Satu-
rated Flow and Transport utilizing the Modified Method of Characteris-
tics in 2D (VSAFT2) software (Yeh et al., 1993a, 1993b). This paper is
organized as follows: Section 2 describes the Kirchhoff transformation
which was used to separate the nonlinear hyperbolic characteristic
from the linear parabolic part in each iterative solution stage, it presents
the FAM formulation, and it proves the stability of the FAM. Numerical
experiments to test the FAM are described in Section 3; Section 4 is
the conclusion.
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