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A B S T R A C T

Advanced analytics can enable manufacturing engineers to improve product quality and achieve
equipment and resource efficiency gains using large amounts of data collected during manufacturing.
Manufacturing engineers, however, often lack the expertise to apply advanced analytics, relying instead
on frequent consultations with data scientists. Furthermore, collaborations between manufacturing
engineers and data scientists have resulted in highly specialized applications that are not relevant to
broader use cases. The manufacturing industry can benefit from the techniques applied in these
collaborations if they can be generalized for a wide range of manufacturing problems without requiring a
strong knowledge about analytical models.
This paper first presents a model-based methodology to help manufacturing engineers who have little

or no experience in advanced analytics apply machine learning techniques for manufacturing problems.
This methodology includes a meta-model repository and model transformations. The meta-models
define concepts and rules that are commonly known in the manufacturing industry in order to facilitate
the creation of manufacturing models. The model transformations enable the semi-automatic generation
of analytical models using a given manufacturing model. Second, a model-based Tool for ADvanced
Analytics in Manufacturing (TADAM) is presented to allow manufacturing engineers to apply the
methodology. TADAM offers capabilities to generate neural networks for manufacturing process
problems. Using TADAM’s graphical user interface, a manufacturing engineer can build a model for a
given process to provide: 1) the key performance indicator (KPI) to be predicted, and 2) the variables
contributing to this KPI. Once the manufacturing engineer has built the model and provided the
associated data, the model transformations available in TADAM can be called to generate a trained neural
network. Finally, the benefits of TADAM are demonstrated in a manufacturing use case in which a
manufacturing engineer generates a neural network to predict the energy consumption of a milling
process.

© 2017 Published by Elsevier B.V.

1. Introduction

Since its creation, the internet has facilitated the communica-
tion of information between humans around the world. Recently,
the “Internet of Things” (IoT) has emerged to enhance information
communication not only between humans but also between things
and humans, and between things [1]. In IoT, a thing is an internet-

connected object such as a car, a heart monitor, a sensor or a GPS
chip. In the manufacturing industry, the connected objects provide
capabilities to collect data at different stages of the product
lifecycle. For example, data are collected by machine sensors at the
design and production stages, and by the products (such as
connected cars) at the service stage.

The IoT not only enables the collection of data, but also supports
advanced analytics to extract useful insights with high returns on
investments in the manufacturing industry. Manyika et al. [2]
summarized the potential economic savings in factories that
leverage IoT and advanced analytics (including facilities for
discrete or process manufacturing as well as data centers, farms,
and hospitals). The authors identified the top potential economic
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impacts anticipated by 2025 in factories using advanced analytics.
The manufacturing industry could expect large gains by optimizing
the operations ($633 to $1766 billion per year) or the inventory
($96 to $342 billion per year) as well as better anticipating the
necessity of plant maintenance ($240 to $627 billion per year).

Applying advanced analytics with IoT requires a strong
architecture for collecting and processing a high variety and
volume of data in a timely manner. Fig. 1 presents a notional
architecture to combine advanced analytics and IoT for providing
insights extracted from the physical system data to the business
level. This architecture is indicative of general operations in this
domain and does not represent any particular implementation. It is
shown here to provide a context in which the work in this paper
takes place.

The manufacturing physical systems (1) compose the bottom
layer of the architecture. The physical systems are machines,
products and sensors that generate a large amount of data at a very
high frequency. For example, a Boeing 737 generates 240 terabytes
(1012) of data during an average cross-country flight [3]. In 2010,
the manufacturing industry stored more than 2 exabytes (1018) of
data according to the same report.

The data layer (2) stores the data or facilitates their streaming. It
also cleans and pre-processes them. The quantity and the
frequency of the data generation requires robust infrastructures
frequently called “Data centers” to store all the data. It is also
necessary to clean and structure raw data collected at the physical
system level. Data may contain missing values or noise; instead of
storing data that might be unusable, the data layer provides
algorithms to fix the issues or eliminate corrupted data. Data are
also structured at this layer for facilitating retrieval and analysis at
higher levels. Executing the different tasks involved in the data
layer in a timely manner is critical especially with streaming data.
The data layer algorithms and infrastructure should enable timely
execution of these different tasks.

Using advanced analytics, the application layer (3) processes
stored or streaming data. The data processing enables the
extraction of new knowledge from the data. There is a variety of

possible advanced analytics tasks at the application layer from
predictive analytics to simulation through UQ. Machine learning
techniques are widely used at this level. Computational infra-
structures are required to process large volumes of data in a timely
manner. An example of a computational solution appropriate to
process data is a Graphics Processing Unit (GPU). A GPU provides
capabilities to perform parallel operations at a high frequency and
could help process data efficiently at the application layer.

The insights extracted at the application layer are communi-
cated to the business layer (4). Data volume and frequency is
reduced compared to the other layers in order to provide
information that manufacturing engineers can understand. Ap-
propriate graphical user interfaces (GUIs) help engineers under-
stand the information in order to make decisions that improve
product quality and achieve equipment and resource efficiency.
These decisions affect different stages of the product life cycle such
as product design, product manufacturing, and product delivery
and impact processes, shop floors, and supply chains.

Communication between these layers is critical and requires
the development and integration of protocols and standards.
Efforts have already started to facilitate communication in the
manufacturing industry. MTConnect [4] is the result of an effort to
structure machine monitoring data. It is an appropriate standard
for communication between the physical systems layer and data
layer. The Predictive Model Markup Language (PMML) [5] offers
capabilities to standardize the communication of predictive
models. A predictive model is developed using data and machine
learning techniques to predict outcomes. PMML facilitates the
communication between applications at the application layer and
between the application layer and business layer.

The focus of this paper is the application layer. Different
advanced analytics tasks are executed at this level. Predictive
analytics and UQ are two tasks that have raised an important
interest among the manufacturing community. As manufacturing
engineers do not possess the required expertise to achieve these
tasks, they usually collaborate with data scientists who provide the
guidelines and knowledge for applying machine learning

Fig. 1. Notional architecture for combining IoT and advanced analytics in manufacturing.
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