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A B S T R A C T

In this paper, a mathematical programming based discontinuum approach is developed for modelling jointed
rock slopes. The formulation naturally leads to a standard second-order cone program, which can be solved using
efficient optimisation solvers, and a purely static method is derived that does not require artificial damping
parameters. Notably, the approach provides somewhat of a unification of two distinct discontinuum approaches:
the soft-particle model and the hard-particle model. A series of numerical examples are conducted to validate the
proposed approach. The soft-particle model is more versatile than the hard-particle model while the hard-par-
ticle model is more efficient.

1. Introduction

The stability analysis of jointed rock slopes is challenging, mainly
because of the existence of the discontinuities introduced by joints or
faults. Because of its importance, the problem has been widely studied
and a large number of models have been proposed. Although limit
equilibrium methods [1–3] have traditionally been employed, and are
effective in slope stability analysis, they require a priori assumptions
regarding the force distributions as well as the shape and location of the
failure surface. As a consequence, little information about the actual
failure mechanism can be obtained. To better simulate the failure me-
chanism and overall deformation pattern, various numerical models
have been proposed in recent decades, including the finite element
method (FEM) [4], the boundary element method (BEM) [5], the dis-
crete element method (DEM) [6] and discontinuous deformation ana-
lysis (DDA) [7]. The FEM has been widely employed for slope stability
analysis (e.g., [8,9] and [10]) with good results, but to model pre-ex-
isting discontinuities it is generally necessary to use joint (or interface)
elements. Since these elements can lead to difficulties involving re-
meshing and convergence issues [11], the extended finite element
method (XFEM) [12] has subsequently been proposed. This procedure
has been applied to model pre-existing discontinuities and crack pro-
pagation in jointed rock masses with some success [13,14].

To model discontinuous materials under large deformation effi-
ciently, discontinuum approaches may be used. There are essentially
two types of these approaches: the soft-particle model and the hard-
particle model [15–17]. The soft-particle model (e.g., the conventional

DEM originally developed by Cundall and Strack [6]) considers overlap
at the contact points between particles to simulate particle elasticity.
This approach is now used widely in the rock mechanics community.
Since pre-existing discontinuities and the growth of cracks can be re-
presented explicitly and conveniently, the interaction of these phe-
nomena can be modelled in a straightforward manner [18–20]. The
influence of joints’ geometrical and mechanical behaviours on jointed
rock slopes’ stability are investigated as well [21,22]. Furthermore,
modelling the complete failure process of a slope is now possible
[23,24].

The second discontinuum approach is the hard-particle model e.g.,
contact dynamics [25,26]. In contrast to the soft-particle model, the
overlap is not allowed at contacts (i.e., particles are perfectly rigid) and
non-smooth contact laws are used. Furthermore, damping coefficients
or local elastic parameters are not necessarily required in the model
[16] and large time steps can be employed because of the adoption of
implicit time discretisation [26]. Numerous studies have been per-
formed using this model and it has proven to be very successful in
modelling granular materials (e.g., [27–31]). Although this dis-
continuum approach has the potential for modelling jointed rock
masses, it has rarely been used for this purpose. One study was per-
formed by Rafiie et al. [32], but all results were limited to Fig. 3 in this
reference.

This work further develops the discontinuum approach based on
mathematical programming [33–39] for modelling jointed rock slopes.
A series of variational formulations are developed for the statics and
dynamics of jointed rock slopes. The frictional contact problem for rock
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blocks is first considered. To model failure of intact rock materials, a
polygonal discretisation is used which is based on the Voronoi diagram.
The variational formulation is developed based on the rigid-body-spring
network [40]. All the formulations developed can be cast into standard
second-order cone programs, which can be solved conveniently using
advanced optimisation algorithms. A number of very efficient and ro-
bust second-order cone programming codes have been developed re-
cently, including MOSEK [41] and SeDuMi [42], which are ideally
suited to the proposed formulations. It is notable that this approach is
more general than the conventional DEM because it incorporates both
the hard-particle and the soft-particle models. Thus, these two models
can be implemented for jointed rock slopes and their results are com-
pared. Another distinct feature is that the purely static formulations,
dedicated to modelling quasi-static problems, can be formulated.

This paper is organised as follows. In Section 2, formulations for
frictionless blocks with the hard-particle model are developed and then
extended to the frictional case. These formulations are further extended
to the soft-particle model in Section 3. To model intact rock materials,
the governing equations for the bonded block model with the modified
Mohr-Coulomb failure criterion are summarised in Section 4. Im-
plementation details are presented in Section 5. In Section 6, the pro-
posed approach is validated with four examples by comparing the nu-
merical results with analytical solutions and experimental observations.

Results from the soft-particle model and the hard-particle model are
also compared. Moreover, the capability of the proposed approach with
the soft-particle model is tested with a jointed rock slope containing
two sets of non-persistent joints. Finally, some conclusions are drawn in
Section 7.

2. Frictional blocks with the hard-particle model

The formulations developed in this section are aimed at describing
sticking, sliding and separating of rock blocks. For clarity, the varia-
tional formulations for frictionless blocks are developed first and only
the translational degrees-of-freedom are considered. Then, the gov-
erning equations are extended to handle frictional blocks by accounting
for tangential forces and the rotational degrees-of-freedom.

2.1. Frictionless blocks with the hard-particle model

2.1.1. Equations of motion
The equations of motion for a single block i are given by:

=v fm ̇i i
ext
i (1)

where mi is its mass, =v v v( ) [ , ]i
x
i

y
iT is its linear velocity, f ext

i is the ex-
ternal force vector acting on it.

Nomenclature

a s
0 acceleration of the seismic loads

AI and A area of the interface I and array containing all interfaces’
area, respectively

c micro-parameter, the cohesion at an interface
Cn and Ct … …k k k kdiag(1/ , ,1/ ) and diag(1/ , ,1/ )n n

N
t t

N1 1 , respectively
Cn, Ct and
Cφ

… … …k k k k k kdiag(1/ , ,1/ ),diag(1/ , ,1/ ) and diag(1/ , ,1/ )n n
N

t t
N

φ φ
N1 1 1 , respec-

tively
D sliding distance of the block relative to the base
d s

0 and ds displacement constraints of the seismic loads
E and ̂E elastic modulus and associated micro-parameter
f ext

i and f ext external force vector of the ith block and its corre-
sponding matrix for all blocks

fn
I and f ntensile force limit of interface I and the corresponding

matrix for all interfaces
g, g0 and g0 contact gap at the current and next time step and the

matrix containing all the interface gaps
J i, Ji and J mass moment of inertia the ith block, J

θ tΔ

i
2 , and the

corresponding matrix for all blocks
kn and kt normal and tangential contact stiffness for frictional con-

tacts
kn, kt and kφ normal, tangential and rotational spring stiffnesses for

bonded blocks
ln and lt normal and tangential length of an interface
lmin the minimum distance between any two random points
mext

i external moment for the ith block
mi, mi and M mass of the ith block,

θ t
m
Δ

i
2 , and its corresponding

matrix for all blocks
n I

0 and ̂n I
0 unit normal and tangential vectors at interface I

N0 and ̂N0 matrixes containing unit normal and tangential vectors
for all interfaces

N0 linear mapping matrix of rotational torques from local
contact variables to the global-coordinate system

O, Oi and Oj midpoint of the interface for the initial configuration,
block i and block j

pI and p normal contact force at contact I and the array containing
the normal reaction forces at all interfaces

qI and q tangential contact force at contact I and the array con-
taining the tangential reaction forces at all interfaces

p I and q I reaction forces at interface I in the normal and tangential
directions

p and q matrices collecting all reaction forces in the normal and
tangential directions

r dynamic force i.e., J αΔ
Rip

I and Riq
I moment arms of the reaction forces pI and qI for the
block i at contact I

Rp and Rq matrixes containing all moment arms i.e., Rip
I and Riq

I

Rp and Rq matrices containing moment arms for p and q , respec-
tively.
t dynamic force i.e., M xΔ
t time
v i

0 and vi current and next velocity of the ith block
v s

0 and vs velocity of the seismic loads
V sliding velocity of the block relative to the base
wi

0 and wi current and next angular velocity of the ith block
x i

0, x
i and x current and next position of the ith block and the matrix

containing all the block positions
α i

0, αi and α current and next angular position of the ith block and
the matrix containing all the block angular positions

Δt time step
uΔ n, uΔ t and αΔ local relative displacements at interface I in the

normal, tangential and rotational directions.
uΔ n, uΔ t and N αΔ0

T local relative displacements at interfaces in the
normal, tangential and rotational directions.

xΔ and αΔ linear and angular displacements of blocks at global
level

λ1 and λ2 arrays containing Lagrange multipliers
μ friction coefficient of the frictional blocks
μb micro-parameter, friction coefficient of the bonded blocks,

=μ ϕtanb b
ν and ̂v Poisson's ratio and the associated micro-parameter
σt micro-parameter, the tensile strength of an interface
τ I and τ torque at the interface I and the array containing torques

at all interfaces
ϕb and ϕc local friction angle of intact interfaces and failure inter-

faces, respectively
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