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a  b  s  t  r  a  c  t

Analytical  flow  models  are  frequently  applied  when  describing  constricted  channel  flow  at  low  and
moderate  Reynolds  numbers.  A  common  assumption  underlying  such  flow  models  is two-dimensional  or
axi-symmetrical  flow.  In  this  work,  two analytical  model  approaches  are  formulated  in order  to  overcome
this  assumption  in  the  case  of naturally  occurring  channel  flows  for which  the assumption  might  be
critiqued.  Advantages  and  flaws  of both  model  approaches  are  discussed  and their  outcome  is compared
with  experimental  data.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Many applications rely on simplified laminar models to obtain
an estimation of quasi-steady flow through constricted channels
at a low computational cost. For low or moderate Reynolds num-
bers, viscous flow effects, which are known to depend on the
cross-section shape [1,2], potentially affect the flow field. Never-
theless, common simplified models often rely on the assumption of
two-dimensional or axi-symmetrical flow so that the cross-section
shape is neglected. Imaging studies of naturally occurring con-
stricted channel flows, such as physiological flow through blood
vessels or airways, revealed a large variation of channel’s cross-
section shapes so that the assumption of two-dimensional (2D) or
axi-symmetrical flow can be questioned for these applications [3].
In the following, two analytical flow models are considered which
account for the cross-section shape of the constricted channel por-
tion so that both result in ‘quasi-three-dimensional’(quasi-3D) flow
models. The first model (boundary layer model) makes the assump-
tion of developing boundary layers whereas the second model
(viscous model) relies on the asymptotic case of fully developed
boundary layers.

2. Constricted channel flow

Pressure driven quasi-steady flow through a constricted channel
(Fig. 1) is considered. A uniform circular channel (area A0) envelops
a constricted portion with minimum constriction (area Ac, length
Lc, hydraulic diameter D = 4Ac/P with P the wetted perimeter) for
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which viscous effects can not be neglected. All corners are rounded
(radius ra). Flow is then generated by imposing upstream pressure
P0 so that the total driving pressure difference yields �P = P0 − Pd
with downstream pressure Pd = 0. Jet formation occurs near the
downstream end of the constricted region (xs) where the flow sep-
arates from the channel wall. The pressure distribution P(x, t) along
the constricted channel portion (x0 ≤ x2) is sought for a known value
of upstream pressure P0.

Experimental data are obtained as described in [4]. Concretely,
upstream pressure P0, pressure P1 at the middle of the constriction
(x/Lc = 0.5) and volume flow velocity � are measured. In addition,
spatial velocity profiles u are measured along (longitudinal – u(x))
and perpendicular (spanwise – u(y)) to the main flow direction.
Mean values are considered which are derived on 5 s of steady sig-
nal for the measured pressure signal P(t) and volume flow rate �(t)
and on 40 s for velocity u(t).

3. Quasi-3D analytical laminar flow modeling

Low or moderate Reynolds number quasi-steady airflow (kine-
matic viscosity � = 1.5 × 10−5 m2/s and density � = 1.2 kg/m3) is
considered so that the flow within the constriction is assumed lam-
inar and incompressible. The no-slip boundary condition is applied
on the rigid channel walls. Volume flow velocity � is conserved so
that d�/dx = 0. Two cases are considered based on the ratio of con-
striction length to the entrance length of the constriction required
to obtain fully developed viscous flow [1,2]. In the first case (Sec-
tion 3.1), Lc is short or comparable to the entrance length of the
constricted portion so that viscous boundary layers develop within
the constriction. Downstream from the constriction pressure recov-
ery due to flow mixing is accounted for so that the expanding jet
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Fig. 1. Illustration of pressure driven flow through a uniform circular channel (area
A0) enveloping a constricted portion (area Ac , hydraulic diameter D and length
Lc). Sharp edges are rounded (radius ra). Main streamwise direction x, pressure
upstream from the constriction P0, pressure downstream from the constriction Pd ,
flow separation position xs , upstream unconstricted channel portion length (Lu)
and  downstream unconstricted channel portion length (Ld) are indicated. A non-
expanding stable straight jet (full lines) with infinite potential core extent x∞

pc and
a  developing jet (dashed curved lines) with finite potential core extent xpc (shaded
area) are depicted.

has a finite potential core xpc (Fig. 1). In the second case (Section
3.2), Lc is long compared to the entrance length of the constricted
portion so that fully developed boundary layers are accounted for.
Flow separation is discussed in Section 3.3.

3.1. Boundary layer model

A simple boundary layer flow model is proposed account-
ing for a developing boundary layer enveloping the core flow
region. Pressure recovery due to flow mixing of the jet issued
from the constriction with the surrounding fluid downstream from
the constriction is accounted for using conservation of mass and
momentum over the mixing region:

ujAj = u2A2, (1)

�u2
2A2 = PjA2 + �Aju

2
j , (2)

where subindex j and 2 indicate respectively the jet region (cross-
sectional area Aj, velocity uj and pressure Pj) and the region
downstream from the mixing zone (cross-sectional area A2 = A0,
velocity u2 and pressure P2 = Pd = 0). The jet cross-sectional area Aj
is given as

Aj

Ac
=
(

1 − 2ı1

D

)2

or
Aj

Ac
≈ 1 − 4ı1

D
since

2ı1

D
< 1, (3)

with ı1 the displacement thickness of the boundary layer approx-
imated as the value for a flat plate of length Lc associated with a
Blasius velocity profile [2]:

ı1 ≈ 1.7

√
LcD

Reref
, (4)

where reference Reynolds number Reref = Duref
� is defined using

hydraulic diameter D and reference velocity uref =
√

2P0
� . An esti-

mation of the pressure within the jet Pj yields

Pj

P0
=

−2
Aj
A2

(
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and the pressure drop �Pc = Pc − Pj becomes

�Pc

P0
= P0 − Pj

P0

(
1 −

A2
j

A2
c

)
. (6)

The pressure within the constriction is then estimated as P(0 ≤ x ≤
Lc) ≈ Pj + x�Pc

Lc
so that the pressure at the center (x/Lc = 0.5) of the

constriction is approximated as P1 ≈ Pj + �Pc
2 .

The centerline velocity u within the constriction (0 ≤ x ≤ Lc), i.e.
in the core flow region outside the boundary layer, is estimated by
approximating the area A(x) following (3) and (4) as

A(x)
Ac

=
(

1 − 2ı1(x)
D

)2

with ı1(x) ≈ 1.7

√
xD

Reref
(7)

so that

u(x) ≈ �

A(x)
(8)

with volume flow velocity � estimated as

� ≈ uref · ¯A(x), (9)

where ¯A(x) indicates the mean value of A(x) within the constric-
tion using (7). Consequently, flow quantities within the constriction
are estimated using a single input parameter (upstream pressure
P0) while accounting for the cross-section shape by its hydraulic
diameter D. Note that downstream from the constriction within the
potential core of the jet (Lc < x ≤ xpc) both the velocity and pressure
can be considered constant so that u(x) ≈ �

Aj
and P(x) ≈ Pj.

3.2. Viscous model

The streamwise momentum equation of the governing
Navier–Stokes equation for driving pressure dP/dx is approximated
using volume flow velocity conservation d�/dx = 0 as [4,5]:

−�2

A3

dA

dx
+ 1

�

dP

dx
= �

(
∂2

u

∂y2
+ ∂2

u

∂z2

)
, (10)

with spanwise direction y, transverse direction z and velocity u(x,
y, z). The flow model expressed in (10) accounts for viscosity (right
hand term) as well as flow inertia (first source term at the left
hand side) and depends therefore on the area as well as on the
shape of the cross-section. It is seen that for a uniform channel, so
that dA/dx = 0 holds, (10) reduces to purely viscous flow [5,2]. The
same way, it is seen that (10) reduces to Euler’s equation describing
Bernoulli flow when viscosity is neglected, i.e. � = 0 as for an ideal
inviscid flow [2].

The pressure distribution P(x, t) as a function of streamwise posi-
tion x and time t up to flow separation (x0 ≤ x ≤ xs) is then given
by integration of (10) [5,4] and results in a quadratic equation of
volume flow velocity �:

P(x, t) = P0 + 1
2

��2
(

1
A2(x0)

− 1
A2(x, t)

)

+ ��

∫ x

x0

dx

ˇ(x, t)
, if x0 ≤ x < xs,

(11)

with dynamic viscosity of the fluid � = �� and  ̌ expressing the
viscous contribution to the pressure drop so that it depends on
the cross-section shape. The assumption of a stable non-expanding
straight jet with infinite potential core extent x∞

pc , i.e. non-viscous
flow, results in P(x, t) = Pd downstream from flow separation (x ≥ xs).
From (11) is seen that the model adds a viscous correction (last
righthand term) to the steady Bernoulli equation [1,2] which relies
on the asymptotic expression for fully developed viscous flow.
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