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a b s t r a c t

Domain experts typically have detailed knowledge of the concepts that are used in their
domain; however they often lack the technical skills needed to translate that knowledge into
model-driven engineering (MDE) idioms and technologies. Flexible or bottom-up modelling
has been introduced to assist with the involvement of domain experts by promoting the use
of simple drawing tools. In traditional MDE the engineering process starts with the definition
of a metamodel which is used for the instantiation of models. In bottom-up MDE example
models are defined at the beginning, letting the domain experts and language engineers focus
on expressing the concepts rather than spending time on technical details of the metamo-
delling infrastructure. The metamodel is then created manually or inferred automatically.
The flexibility that bottom-up MDE offers comes with the cost of having nodes in the exam-
ple models left untyped. As a result, concepts that might be important for the definition of the
domain will be ignored while the example models cannot be adequately re-used in future
iterations of the language definition process. In this paper, we propose a novel approach that
assists in the inference of the types of untyped model elements using Constraint Program-
ming. We evaluate the proposed approach in a number of example models to identify the
performance of the prediction mechanism and the benefits it offers. The reduction in the
effort needed to complete the missing types reaches up to 91.45% compared to the scenario
where the language engineers had to identify and complete the types without guidance.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Conventional Domain-Specific Languages (DSL) definition processes start with the creation of a metamodel which is then
used to instantiate models and guide the development of editors and other artefacts such as model-to-model and model-to-
text transformations. Such a process implies expertise in metamodelling, and in relevant technologies. While this may be an
easy or at least understandable process for MDE experts, this is not always the case with domain experts [1] who are more
familiar with tools like simple drawing editors [2]. However, the involvement of domain experts is important in the defi-
nition of high quality and well-defined DSLs that cover all the needed aspects of a domain. To address the aforementioned
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issue, flexible modelling approaches have been proposed in the literature (e.g. [3–5,1]). Such approaches are based on
sketching tools and do not require the definition of a metamodel during the initial phases of language engineering.

More specifically, in flexible (or bottom-up) MDE, the process starts with the definition of example models [1,6,7]. These
example models help language engineers to better understand the concepts of the envisioned DSL and can be used to infer
draft metamodels manually or (semi-)automatically which eventually lead in the definition of the final metamodel. In this
fashion, a richer understanding of the domain can be developed incrementally, while concrete insights (e.g. type informa-
tion) pertaining to the envisioned metamodel are discovered. Fig. 1 depicts the stages taking place in a typical flexible MDE
process as this is interpreted by studying different flexible MDE approaches in the literature (e.g. [1,2,8]).

The sketching tools used in such processes allow the quick definition of exemplar models sacrificing the formality that
model editors, which are based on a rigorously-defined metamodels, offer. In addition, drawing tools do not require MDE-
specific expertise. The elements (nodes and edges) of these flexible example models can have type annotations assigned to
them to describe the domain concept they represent and can also be amenable to programmatic model management using
MDE suites like Epsilon [9].

On the other hand, since sketching tools cannot enforce syntactic and semantic correctness rules, flexible models are
prone to various types of errors [10]:

1. User input errors: Elements that should share the same type have different types assigned to them by mistake or as a
result of a typo (e.g. Animal vs. Anmal).

2. Changes due to evolution: Elements representing concepts that have evolved during the domain exploration process do
not have their types updated (e.g. Animal vs. Herbivores and Carnivores).

3. Inconsistencies due to collaboration: When multiple domain experts collaborate in the definition of the models, multiple
types representing the same concept can be used (e.g. Doctor vs. Veterinarian).

4. Omissions: Elements can be left untyped especially when models become large as it is easier to overlook some of the elements.

The trade-off between formality and flexibility can possibly result in a better domain understanding by language
engineers, and eventually to a higher quality language. Bottom-up metamodelling is an iterative process, since different
versions of metamodels and exemplar models are continuously evolved in an interleaved manner until the final version of
the metamodel is obtained [1].

The contribution of this paper is a tool-supported approach for eliminating type omission errors (see error labelled “Omis-
sions” above) from flexible models. Currently such errors are eliminated manually by language engineers by selecting an
appropriate type from a set of possible types. That means, that if in the draft metamodel there are N different concrete types, the
language engineer has N options for each untyped element. However, this approach does not benefit from information that exists
in the draft metamodel and that could possibly help in reducing the number of possible types for a specific node. For example, if
in the metamodel it is defined that nodes of type “A” can only be connected with nodes of type “B” then if an untyped node is
connected with a node of type “B”, it can be inferred that the type of the missing node is type “A”. An advantage of that second
approach is that the search space for the possible types suggested to the language engineer can be reduced from N to M, where
M A [1, N], fromwhich the engineer has to select the correct one. In this work, the intended meaning of the “correct type” is the
type that the engineer envisioned when drawing the specific element in the example model.

Our proposed approach does not require a metamodel that is refined to follow the best practices or patterns proposed for
metamodel development. The only requirement is that the metamodel must include all the types and the relationships that are
present in the example models. The term “draft” which characterizes the metamodels needed as part of this approach implies
firstly the optional need of having metamodelling best practices applied to the metamodel. Secondly, it can be “draft” in terms of
not being a final one that covers all the concepts of the domain, but an intermediate one that covers a subset of the concepts, as
soon as these are the only concepts appearing in the example models. This draft metamodel, following the iterative flexible MDE
principles, should reach a final version that covers all the envisioned concepts and relationships. Related to that, it is necessary to
highlight that our proposed approach focuses only on the inference of the types of the untyped nodes in the example models
created (or evolved) as part of a flexible MDE approach (see “Example models definition” phase in Fig. 1). The way that the draft

Fig. 1. Stages of a typical flexible MDE approach.

A. Zolotas et al. / Computer Languages, Systems & Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎2



https://isiarticles.com/article/151713

