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a b s t r a c t

Dual heuristic programming has gained an increasing interest in recent years because it provides an effective
process for optimal adaptive control of uncertain nonlinear systems. However, it requires an off-line stage to
train a global system model from a representative model, which is often infeasible to obtain in practice. This
paper presents a new and efficient approach for online self-learning control based on dual heuristic programming.
This method uses a recursive least square method to online identify an incremental model of the system instead
of a global system model. The presented incremental model based dual heuristic programming method can
adaptively generate a near-optimal controller online without a priori information of the system dynamics or
an off-line training stage. To compare the online adaptability of the conventional dual heuristic programming
method and the newly proposed method, two numerical experiments are performed: an online reference tracking
task and a fault-tolerant control task. The results reveal that the proposed method outperforms the conventional
dual heuristic programming method in online learning capacity, efficiency, accuracy, and robustness.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive control strategies are the foundation for controlling non-
linear systems with uncertainties. To solve these control problems,
Reinforcement Learning (RL) offers an option without using accurate
system models (Khan, Herrmann, Lewis, Pipe, & Melhuish, 2012). RL
is a self-learning method, in which actions are trained in order to
minimize the cost-to-go from interaction with the environment. These
self-learning methods link bio-inspired artificial intelligence techniques
to the field of optimal control and adaptive control to overcome some
of the limitations and challenges of traditional model-based control
methods in practical applications. Approximate Dynamic Programming
(ADP) is an RL method aiming to solve optimal control problems with
large or continuous state spaces (Enns & Si, 2003; Ferrari & Stengel,
2004; Hanselmann, Noakes, & Zaknich, 2007; Si, 2004; Wang, Zhang,
& Liu, 2009; Yadav, Padhi, & Balakrishnan, 2007). They apply an ap-
proximation of the cost-to-go of states and/or an approximation towards
the optimal control policy so as to tackle the ‘curse of dimensionality’.
Therefore, these methods belong to optimal adaptive control (Khan et
al., 2012), and the trained policy is near-optimal.

As a class of ADP methods, Adaptive Critic Designs (ACDs) have
shown great success in optimal adaptive control of nonlinear problems
and practical applications (Ferrari & Stengel, 2004; Khan et al., 2012;
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Prokhorov & Wunsch, 1997; Si, 2004; Wang, He, & Liu, 2017). They
are also known as Actor-Critics (ACs) because they separate evaluation
(critic) and improvement (actor) using parametric structures. The critic
adopts Temporal Difference (TD) methods to approximate the cost-to-
go function, while the actor adapts its parameters towards the optimal
policy by applying the principle of optimality (Khan et al., 2012; Sutton
& Barto, 1998). Although they are called ACs, they often need an extra
structure to approximate the global system model so as to close the
update path of the actor, the critic, or both. The critic, actor, and system
model can be implemented with nonlinear function approximators, such
as Artificial Neural Networks (ANN). With these approximators, ACDs
can identify the system dynamics globally and then adaptively generate
the control laws.

ACDs can generally be categorized into three groups: (1) Heuristic
Dynamic Programming (HDP), which is the most basic form and uses
the critic to approximate the cost-to-go; (2) Dual Heuristic Programming
(DHP), in which the critic approximates the derivatives of the cost-to-
go with respect to the critic inputs; and (3) Globalized Dual Heuristic
Programming (GDHP), which approximates both the cost-to-go and its
derivatives. Several studies comparing the before-mentioned ACDs have
shown that both DHP and GDHP outperform HDP in success rate and
precision (Prokhorov & Wunsch, 1997; Venayagamoorthy, Harley, &
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Wunsch, 2002). The main reason is that the critic of the DHP and the
GDHP directly outputs the derivatives of the cost-to-go, which reduces
the error introduced by the derivation backward through the critic of
the HDP (Si & Wang, 2001). Although the GDHP did not show distinct
advantages over the DHP, the computational complexity is considerably
higher due to the second derivative terms (Prokhorov & Wunsch, 1997;
Si & Wang, 2001). Therefore, the proposed method in this paper is
mainly related to the DHP.

In addition, Action Dependent (AD) variations of these three original
versions have been developed by directly connecting the output of the
actor to the input of the critic (Enns & Si, 2003; Ni, He, Zhong, &
Prokhorov, 2015; Prokhorov & Wunsch, 1997; van Kampen, Chu, &
Mulder, 2006). The AD forms may reduce the dependency on the system
model. However, from the theoretical point of view, the actor output
is not necessarily (usually not) an input to the critic, which estimates
the value/cost function; from the practical perspective, the extra input
will increase the complexity of the critic. Furthermore, previous studies
comparing HDP and its AD form have reported that HDP controllers
have a higher success rate in an auto-landing task (Prokhorov &
Wunsch, 1997), besides which it can operate in a wider range of
flight conditions and adapts faster to the changed plant dynamics in
controlling an F-16 aircraft model (van Kampen et al., 2006).

Online learning control with ACDs has been studied for years and
is still one of the most active areas in RL today. Conventional ACDs
often have two learning phases (Enns & Si, 2003; Ferrari & Stengel,
2004; Prokhorov & Wunsch, 1997; van Kampen et al., 2006; Wang, Liu,
Wei, Zhao, & Jin, 2012): off-line learning and online learning. The main
reason is that the identification of the global system model is not a
trivial task, which needs certain time and usually an off-line learning
phase beforehand (Farrell, Sharma, & Polycarpou, 2005; Lombaerts,
Oort, Chu, Mulder, & Joosten, 2010; Sghairi, De Bonneval, Crouzet,
Aubert, & Brot, 2008; Sonneveldt, Van Oort, Chu, & Mulder, 2008,
2009; Tang, Roemer, Ge, Crassidis, Prasad, & Belcastro, 2009; Van Oort,
Sonneveldt, Chu, & Mulder, 2010). However, this off-line identification
stage needs representative simulation models, which are also difficult
to obtain in practice. During the online phase, extra computing cost is
required to adaptively perform the approximation of the system with
unforeseen dynamics, such as the resulting changes from the changes
in the actor, a time-varying component in the system, uncertainties
in the environment, and unexpected changes due to failures. Several
studies (Ni et al., 2015; Si & Wang, 2001) have suggested to remove
the global system model and to exploit previous critic outputs and/or
inputs instead. Although this technique has been successfully applied to
many ACD methods, it can only relieve the off-line learning phase of the
AD forms. An accurate global system model still plays an important role
in most ACDs, especially in DHP and GDHP because the update of both
the critic and the actor depends on the system model.

This paper aims at increasing the feasibility of ACDs to practical
applications without a priori information. A systematic approach is
proposed for developing online ACD controllers, more specifically for
DHP, based on the incremental control technique. This incremental
technique has been successfully applied to design adaptive controllers,
such as Incremental Nonlinear Dynamic Inversion (INDI) (Sieberling,
Chu, & Mulder, 2010; Simplício, Pavel, van Kampen, & Chu, 2013),
Incremental BackStepping (IBS) (Acquatella, van Kampen, & Chu, 2013)
and incremental adaptive sliding mode control (Putro & Holzapfel,
2016), to deal with system nonlinearities. However, these methods have
not addressed optimization or synthesis of designed closed-loop systems.
Incremental Approximate Dynamic Programming (iADP) (Zhou, van
Kampen, & Chu, 2015, 2017) was proposed for off-line near-optimal
control of unknown nonlinear systems without using system models.
This approach uses a quadratic function to approximate the cost func-
tion. Therefore, it is suitable for many practical control problems with
approximately convex cost functions.

In this paper, Incremental model based Dual Heuristic Programming
(IDHP) is developed for online adaptive control of unknown nonlinear

systems. It uses a linear time-varying approximation of the original
system to replace the global system model in conventional DHP. In
addition, a Recursive Least Square (RLS) technique is used to identify
the incremental model when assuming a sufficiently high sample rate
for discretization. This method belongs to model-free control because it
does not need any a priori information of the system dynamics at the
beginning nor online identification of the global nonlinear system, but
only the online identified incremental model.

The remainder of this paper is structured as follows. Section 2 starts
with a brief introduction of the conventional DHP algorithm and then
focuses on the development of the IDHP method. Section 3 introduces
the nonlinear air vehicle model and discusses some related issues to
achieve the implementation of the DHP and IDHP methods. Then,
Section 4 applies these two algorithms to two illustrative control tasks
and compares their performance with regard to success rates, tracking
errors, settling time, and robustness in different initial states and
failures. Lastly, Section 5 concludes the advantages and disadvantages of
using the incremental approach with DHP and addresses the challenges
and possibilities of the future research.

2. Incremental model based dual heuristic programming design

This section develops an online adaptive controller for unknown
nonlinear systems, namely Incremental model based Dual Heuristic
Programming (IDHP). The major difference with the conventional DHP
is that IDHP does not use a nonlinear function approximator to approach
the global system model. Instead, it exploits an online identified incre-
mental model. Therefore, this method can adapt the controller online
without a priori knowledge of the system dynamics or off-line learning
of the system model. The rest of this section will briefly introduce the
conventional DHP and then focus on the IDHP algorithm and adaptation
rules.

2.1. DHP framework and global system model

DHP methods are most favored within the ACD category because
they have higher success rate and accuracy than the HDP and lower
computational complexity than the GDHP (Prokhorov & Wunsch, 1997;
Si & Wang, 2001; Venayagamoorthy et al., 2002). Conventional DHP
controllers use three nonlinear function approximators to approach the
actor, the critic, and the system dynamical model with weights (or more
generally called model parameters) 𝐰𝑎, 𝐰𝑐 , and 𝐰𝑚, respectively, as
shown in Fig. 1. The Back-Propagation (BP) algorithms of both the critic
and the actor are based on the system model.

The DHP uses the system model to approximate the dynamics of the
global system. The inputs of the system model are the current state,
𝐱𝑡 ∈ 𝑛, and the control input, 𝐮𝑡 ∈ 𝑚, based on which it outputs
the estimated next state, 𝐱̂𝑡+1 ∈ 𝑛. The system model weights 𝐰𝑚(𝑡)
are updated by minimizing the model error. The error is defined as the
difference between the measured state 𝐱𝑡 and the estimated state 𝐱̂𝑡:

𝐸𝑚(𝑡) =
1
2
𝐞𝑚(𝑡)𝑇 𝐞𝑚(𝑡), (1)

where

𝐞𝑚(𝑡) = 𝐱𝑡 − 𝐱̂𝑡. (2)

The update rule for system model weights are formulated according to
the gradient-descent algorithm with a learning rate 𝜂𝑚:

𝐰𝑚(𝑡 + 1) = 𝐰𝑚(𝑡) + 𝛥𝐰𝑚(𝑡), (3)

𝛥𝐰𝑚(𝑡) = −𝜂𝑚 ⋅
𝜕𝐸𝑚(𝑡)
𝜕𝐱̂𝑡

𝜕𝐱̂𝑡
𝜕𝐰𝑚(𝑡)

. (4)

Nonlinear function approximators, such as artificial neural networks,
can identify the system dynamics globally. However, online identifica-
tion of the global model is not a trivial task. It needs a certain time
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