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a b s t r a c t 

In order to quantitatively analyze the variance contributions by correlated input variables 

to the model output, variance based global sensitivity analysis (GSA) is analytically derived 

for models with correlated variables. The derivation is based on the input-output relation- 

ship of tensor product basis functions and the orthogonal decorrelation of the correlated 

variables. Since the tensor product basis function based simulator is widely used to ap- 

proximate the input-output relationship of complicated structure, the analytical solution of 

the variance based global sensitivity is especially applicable to engineering practice prob- 

lems. The polynomial regression model is employed as an example to derive the analytical 

GSA in detail. The accuracy and efficiency of the analytical solution of GSA are validated by 

three numerical examples, and engineering application of the derived solution is demon- 

strated by carrying out the GSA of the riveting and two dimension fracture problem. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Sensitivity analysis aims at investigating the impact of input variations on the variation of a model output, which can be 

classified into two categories: local sensitivity analysis and global sensitivity analysis [1,2] . Global sensitivity analysis (GSA) 

is also called importance measure analysis [3] . The existing importance measures can be summarized to three categories: 

non-parameter techniques (correlation coefficient model) [4,5] , variance based methods [1,6,7] , and moment independent 

model [2,8] . Variance based methods can directly illustrate the variance contributions of the model output by inputs, and 

they have been widely used in engineering design. Variance based GSA was first employed by Cukier et al. in chemistry [9] . 

Then, Hora and Iman introduced the uncertainty importance, and Sacks et al. gave a visual inspection of sensitivity results 

by decomposition of the output [10] . Sobol was inspired by the formers’ work and used analysis of variance (ANOVA) to 

define the variance based sensitivity indices [11,12] . 

There are abundant simulation-based methods for variance based GSA, such as Monte Carlo, SDP, FAST etc [12–16] . These 

simulation-based methods are easy to comprehend and program. Unfortunately, simulation-based method always needs a 

large number of samples, which results in huge computation burden in practice. For uncorrelated variables, an analytical 

variance based GSA method was proposed in Ref. [17] by the theory that multivariate integrals of tensor product basis func- 

tions can be translated to calculations of univariate integrals. For second order polynomial models with correlated variables, 

Refs. [18–20] derived the analytical variance based GSA. 

∗ Corresponding author. 

E-mail addresses: zhangkaichao123321@126.com (K. Zhang), zhenzhoulu@nwpu.edu.cn (Z. Lu), wudanqing86@163.com (D. Wu). 

http://dx.doi.org/10.1016/j.apm.2016.12.036 

0307-904X/© 2017 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.apm.2016.12.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2016.12.036&domain=pdf
mailto:zhangkaichao123321@126.com
mailto:zhenzhoulu@nwpu.edu.cn
mailto:wudanqing86@163.com
http://dx.doi.org/10.1016/j.apm.2016.12.036


K. Zhang et al. / Applied Mathematical Modelling 45 (2017) 748–767 749 

In this paper, we extend the analytical variance based GSA method for uncorrelated variables in Ref. [17] to models 

with correlated variables. Based on the input-output relationship constructed by tensor product basis functions, we derive a 

universal analytical solution of variance based GSA for models with correlated variables. Using orthogonal decorrelation of 

the correlated variables, we achieve a simplified and easy way to realize the analytical derivation for variance based GSA. The 

analytical method proposed in this paper is especially applicable in engineering practice because the tensor product basis 

functions are usually used to create an input-output relationship in engineering. Metamodels commonly used in engineering, 

such as polynomial regression model, Kriging model, Gaussian radial basis model, MARS model etc., can be translated into 

the form expressed by the tensor product basis functions [21] . If the metamodel has been constructed, we can conveniently 

and efficiently obtain the results using the analytical solution of variance based GSA, which needs little computation cost. 

The definition of variance based global sensitivity indices, subset decomposition and the concept of subset sensitivity 

indices are shortly introduced in Section 2 . In Section 3 , based on the tensor product basis functions, the universal ana- 

lytical solution of the variance based GSA is derived for both uncorrelated and correlated variables. In Section 4 , after the 

orthogonal decorrelation of the correlated variables, the analytical variance based GSA for models with correlated variables 

is presented. In Section 5 , some numerical examples are used to validate the method proposed in this paper and engineer- 

ing practice problems are analyzed by the proposed method. The last section evaluates the methods proposed in this paper 

and draws some conclusions to GSA. 

2. Variance based GSA 

2.1. The definition of global sensitivity indices 

Suppose y = f ( x ) is a square integrable function, in which x is a M -dimension input vector, i.e., x = ( x 1 , x 2 , …, x M 

). The 

probability density function (PDF) of x i is expressed by p i ( x i ) and p ( x ) is the joint PDF of x . For models with uncorrelated 

variables, p(x ) = 

∏ M 

i =1 p i ( x i ) . Using high dimension model representation (HDMR), f ( x ) can be decomposited as [11] 

f (x ) = f 0 + 

M ∑ 

i =1 

f i ( x i ) + 

M ∑ 

i 1 =1 

M ∑ 

i 2 = i 1 +1 

f i 1 i 2 ( x i 1 , x i 2 ) + · · · + f 12 ···M 

( x 1 , x 2 , . . . , x M 

) , (1) 

where f 0 is the mean of f ( x ), i.e. 

f 0 = 

∫ 
f (x ) p(x ) d 

x = E[ f (x )] (2) 

in which E [ ·] is the expectation operator. f i ( x i ) is called main effect which is only related to x i and can be obtained by 

f i ( x i ) = 

∫ 
f (x ) p( x −i | x i ) d 

x −i − f 0 = E[ f (x ) | x i ] − f 0 , (3) 

where x − i = ( x 1 , …, x i −1 , x i + 1 , …, x M 

), and p ( x − i | x i ) = p ( x )/ p ( x i ) is the conditional PDF of x − i on x i . For uncorrelated variables, 

p( x −i | x i ) = 

∏ 

j � = i p j ( x j ) . 
f i 1 i 2 ( x i 1 , x i 2 ) is called second order interaction effect which is related to two variables x i 1 and x i 2 and can be obtained by 

f i 1 i 2 ( x i 1 , x i 2 ) = 

∫ 
f (x ) p( x −( i 1 , i 2 ) | x i 1 , x i 2 ) d 

x −( i 1 , i 2 ) − f i 1 ( x i 1 ) − f i 2 ( x i 2 ) − f 0 

= E[ f (x ) | x i 1 , x i 2 ] − f i 1 ( x i 1 ) − f i 2 ( x i 2 ) − f 0 , (4) 

where p( x −( i 1 , i 2 ) 
| x i 1 , x i 2 ) = p(x ) /p( x i 1 , x i 2 ) is the conditional PDF of x −( i 1 , i 2 ) 

on x i 1 and x i 2 . For uncorrelated variables 

p( x −( i 1 , i 2 ) 
| x i 1 , x i 2 ) = 

∏ 

j � = i 1 , i 2 p j ( x j ) . 
In general, f i 1 ···i s ( x i 1 , . . . , x i s ) is called s th order interaction effect which is related to s variables x i 1 , . . . , x i s and can be 

obtained by 

f i 1 ···i s ( x i 1 , . . . , x i s ) = 

∫ 
f (x ) p( x −( i 1 , ... i s ) | x i 1 , . . . , x i s ) d 

x −( i 1 , ... , i s ) −
s −1 ∑ 

k =1 

∑ 

j 1 , ... , j k ∈ ( i 1 , ... i s ) 
f j 1 ... j k ( x j 1 , . . . , x j k ) − f 0 

= E[ f (x ) | x i 1 , . . . , x i s ] −
s −1 ∑ 

k =1 

∑ 

j 1 , ... , j k ∈ ( i 1 , ... , i s ) 
f j 1 ... j k ( x j 1 , . . . , x j k ) − f 0 , (5) 

where j 1 < j 2 < … < j k and p( x −( i 1 , ... , i s ) 
| x i 1 , . . . , x i s ) = p(x ) /p( x i 1 , . . . , x i s ) is the conditional PDF of x −( i 1 , ... , i s ) 

on x i 1 , . . . , x i s . 

For uncorrelated variables p( x −( i 1 , ... , i s ) 
| x i 1 , . . . , x i s ) = 

∏ 

j � = i 1 , ... , i s p j ( x j ) . 
When all the variables are uncorrelated, the variance V of f ( x ) can be expressed as the summation of variances V i 1 ... i s , i.e., 

V = 

M ∑ 

i =1 

V i + 

M ∑ 

i 1 =1 

M ∑ 

i 2 = i 1 +1 

V i 1 i 2 + · · · + V 1 ···M 

. (6) 
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