

Available online at www.sciencedirect.com

Procedia

Energy Procedia 114 (2017) 1890 - 1903

13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland

Heat Transfer Enhancement and Optimization of Lean/Rich Solvent Cross Exchanger for Amine Scrubbing

Yu-Jeng Lin^a, Gary T. Rochelle^{a,*}

Texas Carbon Management Program, McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., C0400, Austin, TX 78712-1589

Abstract

The lean/rich amine cross exchanger is one of the cost centers in the amine scrubbing process, and accounts for 20-30% of the capital cost. To minimize the cross exchanger cost, shortcut methods that determine optimum LMTD and fluid velocity were developed. The optimum LMTD is a function of heat transfer coefficient, temperature change and the capital cost of heat exchanger. A greater LMTD should be used to prevent excessive capital cost when the number of heat transfer units (NTU) is large and the heat transfer coefficient is small. The heat transfer performance can be enhanced by increasing pressure drop and reducing solvent viscosity. The corrugation angle is the primary design geometry for plate-and-frame exchanger (PHE). Based on the empirical correlations for PHE, the heat transfer coefficient at 60° is almost double that at 30° ; however, the pressure drop at a large corrugation angle is also greater. The dependence of the pressure drop per unit length on the heat transfer coefficient is 0.35-0.40, which implies that the heat transfer coefficient will increase 30% by doubling the pressure drop per unit length. The cost associated with the optimization of the cross exchanger has been developed as a function of the fluid velocity, the physical properties, the exponents of the empirical correlations and the pricing parameters. The optimum velocity is independent of the solvent rate, the temperature change of the cross exchanger, and the cross exchanger LMTD. To stay at optimum fluid velocity, the plate number needs to increase as the solvent rate increases while the plate length will increase as the NTU increases. Viscous solvent will result in a lower optimum velocity since it causes higher pressure drop. Typical optimum fluid velocity is at 0.32-0.42 m/s for 8 m PZ. It is worthwhile to utilize higher fluid velocity and pressure drop when the heat transfer can be effectively enhanced by turbulence.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of GHGT-13.

* Corresponding author. Tel.: +1-512-471-7230. *E-mail address:* gtr@che.utexas.edu

1. Introduction

In the amine scrubbing process, the lean/rich amine cross exchanger is used to recover the sensible heat from the hot lean solvent. The cross exchanger heat duty is 3 to 5 times the actual reboiler duty input. Since a large amount of heat is transferred, the capital cost of the cross exchanger is one of the cost centers, accounting for 20–30% of capital cost [1].

To reduce the cross exchanger cost, the most important design parameter, the log mean temperature difference (LMTD), should be optimized. Furthermore, the heat transfer performance can be enhanced by increasing the pressure drop and using a less viscous solvent. This paper aims at investigating the pressure drop and viscosity effect on the cross exchanger performance and reducing the capital cost by providing an optimum design. The plate-and-frame exchanger will be considered to be the type used for the cross exchanger. Mechanical and structure design will not be in the scope of this work.

Aheat exchanger areaCCOEcost of electricityCrconstant in pressure drop correlationCNuconstant in heat transfer correlationCyheat capacityCPECpurchased equipment costDeequivalent diameter (=2\delta)ffanning friction factorhheat transfer coefficientkthermal conductivityLTtotal length of flow pathNuNusselt number (= hD_c/k)mexponent of Renexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= $\rho uD_e/\mu$)Tamstaam temperatureTrebreboiler temperatureVsolvent volume flow rateufluid velocityWrtotal heat transfer coefficientVsolvent volume flow rateufluid velocityWrtotal width of platesGreek- a capital cost scaling factor A capital cost scaling factor A total pressure drop APL_L pressure drop per unit length AT_{LM} log mean temperature difference A plate spacing p pump efficiency	Nomenclature		
C_{COE} cost of electricity C_r constant in pressure drop correlation C_{Nu} constant in heat transfer correlation C_{Nu} constant in heat transfer correlation C_p heat capacity C_{PEC} purchased equipment cost D_e equivalent diameter (=28)ffanning friction factorhheat transfer coefficientkthermal conductivity L_r total length of flow pathNuNuselt number (=hD_k/k)mexponent of Rerinsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= $\rho u D_e/\mu$)T_sunsteam temperatureUoverall heat transfer coefficientÝsolvent volume flow rateufluid velocityWPwidth of patesGreekcapital cost caling factorAcapital cost caling factorAPtotal pressure dropAP/Lpressure dropAP/Lig mean temperature fifterence A capital cost caling factor AP total pressure dropAP/Lig mean temperature fifterence A capital cost caling factor AP total pressure drop AP/L ig mean temperature difference A ig mean temperature difference A pate spacing η_P pump efficiency	, onen		
Crconstant in pressure drop correlationC _{Nu} constant in heat transfer correlationC _p heat capacityC _{PEC} purchased equipment costD _e equivalent diameter (=2δ)ffanning friction factorhheat transfer coefficientkthermal conductivityLrtotal length of flow pathNuNusselt number (=hD _e /k)mexponent of Rensolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (=puD _e /µ)Twosteam temperatureUoverall heat transfer coefficientVsolvent volume flow rateufluid velocityWpwidth of platesGreekcapital cost scaling factorβcapital cost scaling factorβcapital cost scaling factorβpressure dropAPL_Mlog mean temperature differenceβtotal pressure dropAPL_Mlog mean temperature differenceβcapital cost scaling factorβcapital cost scaling factorβcapital cost scaling factorβplate spacingη _P pump efficienceβplate spacingη _P pump efficienceβplate spacingη _P pump efficienceβplate spacingη _P pump efficienceβplate spacing <th>А</th> <th>heat exchanger area</th>	А	heat exchanger area	
C_{Nu} constant in heat transfer correlation C_{Pu} heat capacity C_{PEC} purchased equipment cost D_{e} equivalent diameter (=28)ffanning friction factorhheat transfer coefficientkthermal conductivity L_{T} total length of flow pathNuNusselt number (= D_{e}/k)mexponent of Reinsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= p_{e}/μ)Tasmstam temperatureT _{reb} reboiler temperatureUoverall heat transfer coefficientÝsolvent volume flow rateufluid velocityWpwidth of platesGreckcapital cost scaling factor β capital cost scaling factor β capital cost scaling factor A total pressure drop AP/L_{L} log mean temperature difference δ plate spacing η_p punp efficiency	CCOE	cost of electricity	
Cp heat capacity CpEC purchased equipment cost De equivalent diameter (=28) f fanning friction factor h heat transfer coefficient k thermal conductivity Lr total length of flow path Nu Nusselt number (=hD _c /k) m exponent of Re rin solvent mass flow rate n exponent of Pr p exponent of Pr p exponent of Pr p exponent are drop correlation Q exchanger heat duty Re Reynolds number (= $\rho uD_e/\mu$) Tsun steam temperature Treb reboiler temperature U overall heat transfer coefficient \dot{Y} width of each plate WT total width of plates Greek	$C_{\rm f}$	constant in pressure drop correlation	
C _{PEC} purchased equipment cost D_e equivalent diameter (=28) f fanning friction factor h heat transfer coefficient k thermal conductivity Lr total length of flow path Nu Nusselt number (=hDe/k) m exponent of Re rin solvent mass flow rate n exponent of Pr p exponent in pressure drop correlation Q exchanger heat duty Re Reynolds number (=puDe/μ) T _{stm} steam temperature T _{reb} reboiler temperature U overall heat transfer coefficient \dot{V} solvent volume flow rate u fluid velocity Wp width of each plate WT total width of plates Greek	C _{Nu}	constant in heat transfer correlation	
Deequivalent diameter (=2δ)ffanning friction factorhheat transfer coefficientkthermal conductivityLrtotal length of flow pathNuNusselt number (=hDe/k)mexponent of Reinsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (=puDe/μ)T _{reb} reboiler temperatureVsolvent wolfne flow rateufluid velocityWpwidth of patesGreeksolvent volume flow rateacapital cost scaling factorβcapital cost scaling factorΔP/Lpressure dropΔP/Lpressure drop per unit lengthΔT _{LM} log mean temperature differenceδplate spacingηpump efficient	Cp	heat capacity	
ffanning friction factorhheat transfer coefficientkthermal conductivityLrtotal length of flow pathNuNusselt number $(=hD_c/k)$ mexponent of Remsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number $(=puD_c/\mu)$ Tsmsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficientÝsolvent volume flow rateufluid velocityWpwidth of platesGreekcapital cost scaling factor β capital cost scaling factor $\Delta P/L$ pressure drop $\Delta P/L$ gmean temperature difference δ plate spacing η_p pump efficiency	CPEC	purchased equipment cost	
hheat transfer coefficientkthermal conductivityLTtotal length of flow pathNuNusselt number (=hDe/k)mexponent of Rerinsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (=puDe/µ)Tamsteam temperatureTrebreboiler temperatureVoverall heat transfer coefficientÝsolvent volume flow rateufluid velocityWpwidth of each plateGreekcapital cost scaling factorΔPcapital cost scaling factorΔP/Lpressure dropΔP/Lgo mean temperature differenceδplate spacingηµppunp efficiency	De	equivalent diameter (= 2δ)	
kthermal conductivityLTtotal length of flow pathNuNusselt number (=hD_x/k)mexponent of Remsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (=puD_x/µ)Tstmsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficient \dot{V} solvent volume flow rateufluid velocityWpwidth of each plateWTtotal width of platesGreekAcapital cost scaling factorAP/Lpressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	f	fanning friction factor	
LTtotal length of flow pathNuNusselt number (=hD_k/k)mexponent of Remsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (=puD_k/µ)T _{stm} steam temperatureTrebreboiler temperatureUoverall heat transfer coefficientÝsolvent volume flow rateufluid velocityWpwidth of platesGreekcapital cost scaling factorΔPLpressure drop per unit lengthΔTLMlog mean temperature differenceδplate spacingηpup efficiency	h	heat transfer coefficient	
NuNusselt number (=hDe/k)mexponent of Remsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= ρ uDe/ μ)Tsmsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficientÝsolvent volume flow rateufluid velocityWpwidth of each plateWTtotal pressure drop σ capital cost scaling factor Λ capital cost scaling factor Λ P/Lpressure drop per unit length Δ TLMlog mean temperature difference δ plate spacing η_p pump efficiency	k	thermal conductivity	
mexponent of Remsolvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= puD_e/μ)Tsimsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficientVsolvent volume flow rateufluid velocityWpwidth of platesGreekFredomic annualizing factor Λ capital cost scaling factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	L _T		
\dot{m} solvent mass flow ratenexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= $\rho u D_o/\mu$)Tsimsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficientVsolvent volume flow rateufluid velocityWpwidth of each plateGreekrebail cost scaling factor Λ capital cost scaling factor ΔP total pressure drop ΔPL pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	Nu	Nusselt number (=hD _e /k)	
nexponent of Prpexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= puD_e/μ)Tsmsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficient \dot{V} solvent volume flow rateufluid velocityWpwidth of each plateWTtotal width of platesGreekGcapital cost scaling factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	m	exponent of Re	
pexponent in pressure drop correlationQexchanger heat dutyReReynolds number (= ρ uDe/ μ)Tsmsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficient \dot{V} solvent volume flow rateufluid velocityWpwidth of each plateWTtotal width of platesGreekcapital cost scaling factor Δ capital cost scaling factor Δ Ptotal pressure drop Δ PLpressure drop per unit length Δ TLMlog mean temperature difference δ plate spacing η_p pump efficiency	ṁ	solvent mass flow rate	
Qexchanger heat dutyReReynolds number (=puD_e/μ)Tsimsteam temperatureTrebreboiler temperatureUoverall heat transfer coefficient \dot{V} solvent volume flow rateufluid velocityWpwidth of each plateWTtotal width of platesGreek α capital cost scaling factor β capital cost scaling factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	n	exponent of Pr	
ReReynolds number (=puD_/µ) T_{stm} steam temperature T_{reb} reboiler temperature T_{reb} reboiler temperatureUoverall heat transfer coefficient \dot{v} solvent volume flow rateufluid velocity W_p width of each plate W_T total width of plates Greek α capital cost scaling factor β capital cost scaling factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	р		
T_{stm} steam temperature T_{reb} reboiler temperatureUoverall heat transfer coefficient \dot{V} solvent volume flow rateufluid velocity W_p width of each plate W_T total width of platesGreek α capital cost scaling factor β capital cost annualizing factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Reynolds number $(=\rho u D_e/\mu)$	
Uoverall heat transfer coefficient \dot{V} solvent volume flow rateufluid velocity W_p width of each plate W_T total width of plates Greek			
\dot{V} solvent volume flow rateufluid velocity W_p width of each plate W_T total width of platesGreek α capital cost scaling factor β capital cost annualizing factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	T _{reb}		
ufluid velocity W_p width of each plate W_T total width of plates Greek α capital cost scaling factor β capital cost annualizing factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency		overall heat transfer coefficient	
W_p width of each plate W_T total width of platesGreek α α capital cost scaling factor β capital cost annualizing factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency	Ý	solvent volume flow rate	
W_T total width of plates Greek			
Greek α capital cost scaling factor β capital cost annualizing factor ΔP total pressure drop $\Delta P/L$ pressure drop per unit length ΔT_{LM} log mean temperature difference δ plate spacing η_p pump efficiency			
$ \begin{array}{ll} \alpha & \mbox{capital cost scaling factor} \\ \beta & \mbox{capital cost annualizing factor} \\ \Delta P & \mbox{total pressure drop} \\ \Delta P/L & \mbox{pressure drop per unit length} \\ \Delta T_{LM} & \mbox{log mean temperature difference} \\ \delta & \mbox{plate spacing} \\ \eta_P & \mbox{pump efficiency} \\ \end{array} $		total width of plates	
$ \begin{array}{ll} \beta & \mbox{capital cost annualizing factor} \\ \Delta P & \mbox{total pressure drop} \\ \Delta P/L & \mbox{pressure drop per unit length} \\ \Delta T_{LM} & \mbox{log mean temperature difference} \\ \delta & \mbox{plate spacing} \\ \eta_{p} & \mbox{pump efficiency} \end{array} $	Greek		
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{ll} \Delta P/L & \mbox{pressure drop per unit length} \\ \Delta T_{LM} & \mbox{log mean temperature difference} \\ \delta & \mbox{plate spacing} \\ \eta_p & \mbox{pump efficiency} \end{array}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
δ plate spacing $η_p$ pump efficiency			
η_p pump efficiency			
	δ		
η_{tb} steam turbine efficiency	η_p		
	η_{tb}	steam turbine efficiency	

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران