
JID:TCS AID:11449 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.227; Prn:10/01/2018; 14:48] P.1 (1-15)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Towards reasoning about Petri nets: A Propositional Dynamic

Logic based approach ✩

Mario Benevides a, Bruno Lopes b,∗, Edward Hermann Haeusler c

a Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Brazil
b Instituto de Computação, Universidade Federal Fluminense, Brazil
c Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 April 2017
Received in revised form 30 December 2017
Accepted 8 January 2018
Available online xxxx

Keywords:
Dynamic Logic
Petri nets
Modal Logic

This work extends our previous work [4,22] with the iteration operator. This new
operator allows for representing more general networks and thus enhancing the former
propositional logic for Petri nets. We provide an axiomatization and a new semantics, prove
soundness and completeness with respect to its semantics and the EXPTIME-Hardness of
its satisfiability problem, present a linear model checking algorithm and show that its
satisfiability problem is in 2EXPTIME. In order to illustrate its usage, we also provide some
examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Propositional Dynamic Logic (PDL) [10] plays an important role in formal specification and reasoning about programs
and actions. PDL is a multi-modal logic with one modality for each program π 〈π〉. It has been used in formal specification
to reasoning about properties of programs and their behavior. Correctness, termination, fairness, liveness and equivalence of
programs are among the properties usually desired. A Kripke semantics can be provided, with a frame F = 〈W , Rπ 〉, where
W is a set of possible program states and for each program π , Rπ is a binary relation on W such that (s, t) ∈ Rπ if and
only if there is a computation of π starting in s and terminating in t .

There are a lot of variations of PDL for different approaches [2]. Propositional Algorithmic Logic [26] that analyzes
properties of programs connectives, the interpretation of Deontic Logic as a variant of Dynamic Logic [25], applications
in linguistics [19], Multi-Dimensional Dynamic Logic [29] that allows multi-agent [18] representation, Dynamic Arrow
Logic [32] to deal with transitions in programs, Data Analysis Logic [8], Boolean Modal Logic [11], logics for reasoning
about knowledge [9], logics for knowledge representation [20] and Dynamic Description Logic [34].

Petri net is a widely used formalism to specify and to analyzes concurrent programs with a very nice graphical repre-
sentation. It allows for representing true concurrency and parallelism in a neat way.

In [22], we present the logic Petri-PDL which uses marked Petri net programs as PDL programs. These marked Petri net
programs are representations of marked Petri nets with only three types of transitions: (i) from one place to one place,
(ii) from two places to one place and (iii) from one place to two places. The results presented in this paper consider only

✩ This work was supported by the Brazilian research agencies CNPq, CAPES and FAPERJ.

* Corresponding author.
E-mail addresses: mario@cos.ufrj.br (M. Benevides), bruno@ic.uff.br (B. Lopes), hermann@inf.puc-rio.br (E.H. Haeusler).
URLs: http://www.cos.ufrj.br/~mario/ (M. Benevides), http://www.ic.uff.br/~bruno (B. Lopes), http://www.tecmf.inf.puc-rio.br/EdwardHermann

(E.H. Haeusler).

https://doi.org/10.1016/j.tcs.2018.01.007
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2018.01.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:mario@cos.ufrj.br
mailto:bruno@ic.uff.br
mailto:hermann@inf.puc-rio.br
http://www.cos.ufrj.br/~mario/
http://www.ic.uff.br/~bruno
http://www.tecmf.inf.puc-rio.br/EdwardHermann
https://doi.org/10.1016/j.tcs.2018.01.007

JID:TCS AID:11449 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.227; Prn:10/01/2018; 14:48] P.2 (1-15)

2 M. Benevides et al. / Theoretical Computer Science ••• (••••) •••–•••

Petri nets with these types of transitions. So if π is a Petri net program with markup s, then the formula 〈s, π〉ϕ means
that after some running of this program with the initial markup s, ϕ will eventually be true (also possible a �-like modality
replacing the tags by brackets as an abbreviation for ¬〈s, π〉¬ϕ).

This work extends our previous work [4,22] with the iteration operator. This new operator allows for representing more
general networks and thus enhancing the former propositional logic for Petri nets. We provide a sound and complete
axiomatization and also prove the finite model property for the case of bounded Petri net programs, which together with
the axiomatization yields decidability. In this paper we extend these previous works by establishing that, for the case of
unbounded Petri net programs, the logic has no finite model property, proving that its SAT problem is EXPTIME-hard and
that it is in 2EXPTIME; we also present a linear time model checking algorithm.

Our paper falls in the broad category of works that attempt to generalize PDL and build dynamic logics that deal with
classes of non-regular programs. As examples of other works in this area, we can mention [13,14] and [21], that develop
decidable dynamic logics for fragments of the class of context-free programs and [1,3,12,27] and [28], that develop dynamic
logics for classes of programs with some sort of concurrency. Our logics have a close relation to two logics in this last
group: Concurrent PDL [27] and Concurrent PDL with Channels [28]. Both of these logics are expressive enough to represent
interesting properties of communicating concurrent systems. However, neither of them has a simple Kripke semantics. The
first has a semantics based on super-states and super-processes and its satisfiability problem can be proved undecidable (in
fact, it is �1

1-hard). Also, it does not have a complete axiomatization [28]. On the other hand, our logics have simple Kripke
semantics, simple and complete axiomatizations and finite model property.

There are other approaches that use Dynamic Logic to reason about specifications of concurrent systems represented as
Petri nets [16,17,31]. They differ from our approach by the fact that they use Dynamic logic as a specification language for
representing Petri net, they do not encode Petri nets as programs of a Dynamic Logic. They translate Nets into PDL language
while we have a new Dynamic Logic tailored to reason about Petri nets in a more natural way.

This paper is organized as follows. Section 2 presents all the background needed about (marked) Petri nets formalism and
Propositional Dynamic Logic. Section 3, introduces our dynamic logic, with its language and semantics and also proposes an
axiomatization and provides a prove of soundness and completeness. In Section 5 we show that the satisfiability problem is
EXPTIME-Hard and is in 2EXPTIME and present a linear time model checking algorithm. Section 6 illustrates the use of our
logic with some examples. Finally, Section 7, presents some final remarks and future works.

2. Background

This section presents a brief overview of two topics on which the later development is based on. First, we make a brief
review of the syntax and semantics of PDL [15]. Second, we present the Petri nets formalism and its variant, marked Petri
nets. Finally, the compositional approach introduced in [7] is briefly discussed.

2.1. Propositional Dynamic Logic

In this section, we present the syntax and semantics of the most used dynamic logic called PDL for regular programs [10].
We deliberately omit the test operator as we do not use it in this work.

Definition 1. The PDL language consists of a set � of countably many proposition symbols, a set � of countably many basic
programs, the boolean connectives ¬ and ∧, the program constructors ; (sequential composition), ∪ (non-deterministic
choice) and � (iteration) and a modality 〈π〉 for every program π . The formulae are defined as follows:

ϕ ::= p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉ϕ, with π ::= a | π1;π2 | π1 ∪ π2 | π�,

where p ∈ � and a ∈ �.

In all the logics that appear in this paper, we use the standard abbreviations ⊥ ≡ ¬�, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ → φ ≡
¬(ϕ ∧ ¬φ) and [π]ϕ ≡ ¬〈π〉¬ϕ .

Each program π corresponds to a modality 〈π〉, where a formula 〈π〉α means that after the running of π , α eventually
is true, considering that π halts. There is also the possibility of using [π]α (as an abbreviation for ¬〈π〉¬α) indicating that
the property denoted by α holds after every possible run of π .

The semantics of PDL is normally given using a transition diagram, which consists of a set of states and binary relations
(one for each program) indicating the possible execution of each program at each state. In PDL literature a transition diagram
is called a frame.

Definition 2. A frame for PDL is a tuple F = 〈W , Rπ 〉 where

• W is a non-empty set of states;
• Ra is a binary relation over W , for each basic program a ∈ �;
• We can inductively define a binary relation Rπ , for each non-basic program π , as follows

https://isiarticles.com/article/152026

