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a b s t r a c t 

Efficient siphon computation plays an important role in deadlock control. This work, based 

on problem decomposition, develops a new method to compute all strict minimal siphons 

(SMS) in a class of Petri nets called Systems of Simple Sequential Processes with Resources 

(S 3 PR). It is proved to be of polynomial complexity with respect to the number of SMSs. 

Therefore, it is readily applicable to an S 3 PR with a large number of SMSs. Its superiority 

over the existing methods is validated via experimental results. 

© 2017 Published by Elsevier Inc. 

1. Introduction 

Many discrete event systems (DES) such as flexible manufacturing systems, unmanned urban traffic systems, and 

network-communication systems in the real world face deadlock issues. In a deadlock situation, two or more competing 

processes are each waiting for the others to finish, and thus none can proceed. The occurrence of deadlocks often deterio- 

rates the utilization of resources and may lead to catastrophic results. Therefore, it is critically important for both academic 

and industrial communities to solve the deadlock problems. 

Petri nets are a modelling tool that is widely used to deal with deadlock problems in DES [3,5,6,8–10,12–14,18–21,24,26–

30,35,37,41,43–46,4 8,4 9] . Siphons, as a well-known structural object of Petri nets, are closely related to deadlocks of a Petri 

net [6,22] . More specifically, once a siphon contains insufficient tokens, some transitions are permanently disabled, i.e., a 

partial or total deadlock arises in the net. Hence, many researchers study siphon-based deadlock resolution approaches 

[3,6,8,13,18,19,21,28–30,41,44,4 8,4 9] , which guarantee that deadlocks never occur in Petri nets by controlling transition firings 

such that siphons are sufficiently marked. 

The computational complexity of siphon-based deadlock resolution approaches mainly depends on that of siphon compu- 

tation. Hence, the efficient computation of siphons is of great importance. Since the number of siphons in a Petri net in the 

worst case grows exponentially with respect to the net size, all siphon computation methods are theoretically of exponential 

complexity with respect to the net size. However, different methods differ greatly in their computational efficiency. 
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Generally, siphon computation methods can be classified into two categories considering their scopes of applications. 

Some are applicable to general Petri nets, such as the INA-based method [31] , sign matrix method [2] , semi-tensor product 

of matrix method [11] , graph theory [1] , linear integer programming [10,28,29] , and problem decomposition [7,25,40] . The 

other ones are applicable to some special classes of Petri nets only. Although application scopes are restricted, their compu- 

tational efficiency is usually quite high in comparison with the former. Hence, many researchers study siphon computation 

for some special classes of Petri nets [4,6,8,13,16,17,19,20,27,30,33–35,38,42,46,47] . 

Especially, a class of Petri nets called Systems of Simple Sequential Processes with Resources (S 3 PR) [8] receive much 

attention and many methods are proposed to compute their strict minimal siphons (SMS). Li et al. [20] propose a resource 

circuit-based method to compute SMS in S 3 PR. They carry out an experiment to compare the computational efficiency 

among the INA-based method [31] , sign matrix method [2] , and the resource circuit-based method. Their results show that 

the resource circuit-based one offers much higher computational efficiency than the other two. However, some incorrect 

results about SMS computation in [20] are pointed out in [42] . Besides, the loop resource subset-based method proposed in 

[42] is shown to be superior to the resource circuit-based one. Xing et al. define the concept of maximal perfect resource- 

transition circuits (MPRT-circuits) [45] in S 3 PR and a deadlock is characterized as a saturated MPRT-circuit. Essentially, a 

MPRT-circuit is a structural object equivalent to an SMS. The computation of MPRT-circuits is presented in [46,47] . 

Li and Zhou [19] divide SMS into elementary and dependent ones. They prove that under some conditions, a liveness- 

enforcing supervisor can be obtained by controlling elementary SMS only. It implies that only elementary SMS are required 

to be computed for supervisor synthesis. Hence, some efforts are made to improve the efficiency of computing elementary 

SMS [16,38] . 

Some studies also focus on a class of Petri nets called S 4 PR [32] when computing minimal siphons. Note that S 4 PR is 

a more general class than S 3 PR and thus siphon computation methods for S 4 PR are also applicable to S 3 PR. Cano et al. 

[4] propose a pruning-graph-based method, which can enumerate all minimal siphons in S 4 PR. Tricas et al. [33,34] utilize a 

genetic algorithm to compute a set of minimal siphons. Besides, Tricas et al. [35] implement a deadlock prevention method 

by means of the solutions for a set of integer linear programs, which avoids the complete enumeration of siphons in S 4 PR. 

Chu and Xie [6] first propose mixed integer programming (MIP), through which a maximal unmarked siphon can be 

found at a given marking. Similar studies on the computation of a maximal unmarked siphon are reported in [27,30] . Later, 

Huang et al. [13] and Li and Liu [17] propose minimal siphon extraction algorithms based on MIP such that the complete 

siphon enumeration is successfully avoided. 

Most of existing methods can hardly handle a large-size net. For example, when INA is used to find all minimal siphons 

in a net with 72 places and 64 transitions, the computation in a personal computer aborts due to memory overflow after 

several days [21] . Besides, most of existing complete siphon enumeration methods fail to obtain a result even when they are 

applied to a Petri net without a huge number of siphons. One reason behind it is that they are of exponential complexity 

not only with respect to the net size, but also with respect to the number of siphons to be computed. Hence arises a strong 

need for efficient siphon computation. To the best knowledge of the authors, no siphon computation method has been 

established such that it has only polynomial complexity with respect to the number of siphons in such special classes of 

Petri nets as S 3 PR. 

This work studies how to efficiently compute all SMSs in S 3 PR. A novel algorithm based on problem decomposition is 

proposed. More importantly, it is proved to be of polynomial complexity with respect to the number of SMSs to be found, 

which has never been seen in any prior work. 

The remainder of this work is organized as follows. Section 2 briefly presents the related notions of Petri nets. 

Section 3 introduces a novel SMS computation method for S 3 PR. Section 4 presents its algorithm complexity and experi- 

mental results that validate the superiority of the proposed method over its peers. Section 5 concludes this work. 

2. Preliminaries 

2.1. Petri nets [23] 

An ordinary Petri net is a 3-tuple N = ( P , T , F ) where P and T are finite, nonempty, and disjoint sets. P is the set of places , 

and T is the set of transitions . The set F ⊆ ( P × T ) ∪ ( T × P ) is the flow relation . Given a net N = ( P , T , F ) and a node x ∈ P ∪ T , 
• x = { y ∈ P ∪ T |( y , x ) ∈ F } is the preset of x , while x • = { y ∈ P ∪ T |( x , y ) ∈ F } is the post-set of x . ∀ X ⊆ P ∪ T , • X = ∪ x ∈ X •x , and X 

• 

= ∪ x ∈ X x •. ∀ x ∈ P ∪ T , •• x = 

• ( • x ), and x •• = ( x • ) • . N = ( P , T , F ) is called a state machine if ∀ t ∈ T , | • t | = | t • | = 1 . 

A marking M of N is a mapping from P to N where N = {0, 1, 2, …}. We use the multi-set notation 

∑ 

p∈ P M(p) p to denote 

vector M , where M ( p ) indicates the number of tokens in p at M . For example, M = [2, 1, 0, 0] T is denoted by M = 2 p 1 + p 2 . A 

place p is marked by M if M ( p ) > 0. 

The incidence matrix of N is a matrix [ N ]: P × T → Z indexed by P and T such that [ N ] ( p , t ) = −1 if p ∈ 

• t \ t • ; [ N ] ( p , t ) = 1 if 

p ∈ t • \ • t ; otherwise [ N ] ( p , t ) = 0 for all p ∈ P and t ∈ T . A P-vector is a column vector I : P → Z indexed by P , where Z is the set 

of integers. I is a P-invariant if I � = 0 and I T • [ N ] = 0 T hold. A P -invariant I is a semiflow if every element of I is non-negative. 

|| I || = { p ∈ P | I ( p ) � = 0} is called the support of I. 

A nonempty set S ⊆P is a siphon if • S ⊆ S • . A siphon is minimal if there is no siphon contained in it as a proper subset. 

A minimal siphon that does not contain the support of any P -invariant is called a strict minimal siphon (SMS). 
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