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A B S T R A C T

Fuzzy Petri nets (FPNs) are a potential modeling technique for knowledge representation and reasoning of rule-
based expert systems. To date, many studies have focused on the improvement of FPNs and various new
algorithms and models have been proposed in the literature to enhance the modeling power and applicability of
FPNs. However, no systematic and comprehensive review has been provided for FPNs as knowledge
representation formalisms. Giving this evolving research area, this work presents an overview of the improved
FPN theories and models from the perspectives of reasoning algorithms, knowledge representations and FPN
models. In addition, we provide a survey of the applications of FPNs for solving practical problems in variety of
fields. Finally, research trends in the current literature and potential directions for future investigations are
pointed out, providing insights and robust roadmap for further studies in this field.

1. Introduction

Fuzzy Petri nets (FPNs) are a modification of classical Petri nets
(PNs) for dealing with imprecise, vague or fuzzy information in
knowledge based systems, which have been extensively used to model
fuzzy production rules (FPRs) and formulate fuzzy rule-based reason-
ing automatically. An FPN is a marked graphical system containing
places and transitions, where graphically circles represent places, bars
depict transitions, and directed arcs denote the incidence relationships
from places to transitions or from transitions to places. The main
characteristics of an FPN are that it supports structural organization of
information, provides visualization of knowledge reasoning, and facil-
itates design of efficient fuzzy inference algorithms. All these render
FPNs a potential modeling methodology for knowledge representation
and reasoning in expert systems (Chen et al., 1990; Liu et al., 2013a;
Yeung and Tsang, 1994a).

Since the introduction of FPNs for supporting approximate reason-
ing in a fuzzy rule-based system (Looney, 1988), they have received a
great deal of attention from academics and practitioners in the domain
of artificial intelligence. However, the earlier FPNs, as indicated in the
academic literature, are plagued by a number of shortcomings, and are
not suitable for increasingly complex knowledge-based systems.
Therefore, a variety of alternative models have been put forward in

the literature to enhance the knowledge representation power of FPNs
and to implement the rule-based reasoning more intelligently. Besides,
FPNs have been widely used by researchers and practitioners to
manage different kinds of engineering problems in many fields. To
the best of our knowledge, however, no research is found to present a
thorough review on FPNs as a knowledge representation formalism.
This paper aims to summarize and analyze the existing approaches to
enhance the performance of FPNs, and further introduce in depth the
applications of FPNs to solve real-world problems. Related articles
published in international journals between 1988 and 2016 are
gathered and reviewed. The specific objectives of this review are:

• To establish sources of improvements around FPNs and identify
those aspects that attract the most attention in the FPN literature.

• To describe the development of FPNs and find the approaches that
are prevalently applied.

• To uncover gaps and trends in the current FPN literature and
highlight future directions for research.

This study not only provides evidence that some alternative models
are better than former FPNs, but also aids both practitioners and
researchers in applying FPNs more effectively. The paper's goal is to
also provide a spur to further study this area in depth and develop
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richer knowledge on FPNs to help industrialists build effective expert
systems for intelligent decision making.

The rest of this paper is organized in the following way. First, some
background knowledge regarding FPRs and FPNs, and the major
aspects of research on FPNs are presented in Section 2. Section 3
reviews the improved FPN approaches from the perspectives of
reasoning algorithms, knowledge representations and FPN models. In
Section 4 we introduce the applications of FPNs in different engineer-
ing areas. Section 5 describes some general observations based on
statistical analysis results of this review. Section 6 discusses the main
findings of this literature survey and gives suggestions for the future
work. Finally, Section 7 concludes the paper.

2. FPRs and FPNs

2.1. FPRs

FPRs have been comprehensively used to represent, capture and
store vague expert knowledge in decision systems. Each rule is usually
expressed in the form of a fuzzy if-then rule in which both the
antecedent and the consequent are fuzzy terms expressed by fuzzy
sets. If an FPR consists of either AND or OR connectors, then it is
called a composite or compound FPR (Chen, 1996).

To enhance the representation and reasoning capabilities of FPRs,
the weight parameter (Tsang et al., 2004; Yeung and Tsang, 1997) has
been incorporated into fuzzy if-then rules, obtaining the weighted FPRs
(WFPRs). Let R be a set of WFPRs, i.e.,R R R R= { , , ... , }n1 2 , the form of
the ith rule can be presented as

R a c μ Th w: IF THEN (CF = ), ,i (1)

where a and c are the antecedent and consequent parts of the rule,
respectively, which comprise one or more propositions with fuzzy
variables. The parameter μ μ( ∈ [0, 1]) is the certainty factor indicating
the belief strength of the rule,Th λ λ λ= { , , ..., }m1 2 is a set of threshold
values specified for each of the propositions in the antecedent, and
w w w w= { , , ... , }m1 2 is a set of weights assigned to all propositions in the
antecedent, showing the relative importance of each proposition in the
antecedent contributing to the consequent.

In general, WFPRs can be divided into five types as listed below (Ha
et al., 2007; Liu et al., 2013a; Yeung and Ysang, 1998):

Type 1. A simple weighted fuzzy production rule

R: IF a THEN c μ λ w( ; ; )

Type 2. A composite weighted fuzzy conjunctive rule in the ante-
cedent

R: IF a1 AND a2 AND…AND am THEN c
μ λ λ λ w w w( ; , , ..., ; , , ..., )m m1 2 1 2

Type 3. A composite weighted fuzzy conjunctive rule in the
consequent

R: IF a THEN c1 AND c2 AND…AND cm μ λ w( ; ; )

Type 4. A composite weighted fuzzy disjunctive rule in the ante-
cedent

R: IF a1 OR a2 OR…OR am THEN c μ λ λ λ w w w( ; , , ..., ; , , ..., )m m1 2 1 2

Type 5. A composite weighted fuzzy disjunctive rule in the conse-
quent

R: IF a THEN c1 OR c2 OR…OR cm μ λ w( ; ; ).
In many practical applications, the rules of Types 4 and 5 are not

allowed to appear in a knowledge base since they can be transferred
into several rules of Type 1. The following rules are several typical
examples of WFPRs:

R1: IF it is hot THEN the humidity is low (μ=0.9);
R2: IF John is fat AND John is tall AND John is a man THEN he is
heavy (μ=1.0);
R3: IF fever is high AND cough is heavy AND blood pressure is
normal THEN pneumonia (μ=0.8);
R4: IF regulator semiconductor is broken THEN exciter is not
enough (μ=0.9; λ=0.2; w =1.0);
R5: IF frequency is higher than normal value AND double frequency
is smaller than normal value AND amplitude changes obviously as
the loads change THEN rotor is hot bending (μ=0.9; λ1 =0.3, λ2 =0.3,
λ3 =0.2; w1 =0.5, w2 =0.3, w3 =0.2).

It is worth noting that R4 and R5 are WFPRs derived from the fault
diagnosis of aircraft generator (Liu et al., 2016a).

2.2. PNs and FPNs

PNs are a graphical and mathematical modeling method used to
model and analyze discrete event systems (Cassandras and Lafortune,
2008; Li et al., 2012a, 2012b) such as communication, manufacturing
and transportation systems. Tokens in the places represent the state of
a system (Chen et al., 2014b; Li and Zhao, 2008; Zhang et al., 2015). A
PN is formally defined as a 5-tuple (Murata, 1989):

P T F W MPN = ( , , , , )0 (2)

where P and T are finite sets of places and transitions, respectively, the
flow relation between P and T is denoted by F P T T P⊆ ( × ) ∩ ( × ),
W F: → {0, 1, 2, ...} is a weight function, and M P: → {0, 1, 2, ...}0 is
the initial marking. A PN example is shown in Fig. 1(a), where
P p p T t= { , }, = { },1 2 1 F p t t p= {( , ), ( , )}1 1 1 1 and its initial marking is
M = [3 0]T0 at which t1 is enabled. After t1 fires, one token is removed
from its input place, i.e., p1, and deposited into its output place, i.e., p2.

To deal with uncertainty in knowledge representation and reasoning,
FPNs have been developed from the PN theory, where tokens representing
the state of propositions are marked by a truth value between 0 and 1. By
applying a PN formalism to fuzzy rule-based systems, it is able to visualize
the structure of an expert system and express its dynamic proposition logic
reasoning behavior efficiently. For example, in Fig. 1(b), we have
P p p T t I t p= { , }, = { }, ( ) = { },1 2 1 1 1 O t p f t μ α p α( ) = { }, ( ) = , ( ) = ,1 2 1 1 1 1

and α p( ) = 02 based on the basic FPN defined in Eq. (3). For an FPN, a
transition is said to be enabled if all of its input places are marked by a
token and its real value is greater than or equal to a threshold value. The
reasoning process of an FPN is executed by firing the rules and updating
the truth degree vector at each reasoning step.

Due to the features of fuzzy rule-based systems, the major
differences between PNs and FPNs are as follows (Gao et al., 2003;
Hanna et al., 1996; Hu et al., 2011):

(1) In FPNs, the number of tokens in a place cannot be greater than
one since a token is associated with a truth value between 0 and 1.
A token does not represent an “object,” whereas it may likely do so
in PNs.

(2) FPNs are always conflict-free nets because there is no “resource”
concept in FPNs and a proposition may be shared by different rules
at the same time. For example, in Fig. 2, the proposition d3 is
shared by two rules R1 and R2, which can utilize proposition d3
simultaneously and reason in parallel.

(3) The tokens are not removed from the input places of a transition
after it fires since the evaluation of the rules means the truth
propagation of the propositions only. That is, the antecedent part
remains verified although its consequent part may already be
proved in the knowledge reasoning.
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