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We study open systems modeled as Petri nets with an interface for asynchronous 
communication with other open systems. As a minimal requirement for successful 
communication, we investigate bounded responsiveness, which guarantees that an open 
system and its environment always have the possibility to mutually terminate or to 
communicate, while the number of pending messages never exceeds a previously known 
bound. Bounded responsiveness conformance describes when one open system can be 
safely replaced by another open system. We present a trace-based characterization for 
conformance and show decidability. We further develop a finite characterization of the 
infinite set of all conforming open systems to a given open system. We implement the 
decision algorithm for conformance and evaluate it using industrial-sized open systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Today’s software systems are complex distributed systems that are composed of less complex open systems. In this paper, 
we focus on open systems that have a well-defined interface and communicate with each other via asynchronous message 
passing. Examples for such systems are service-oriented systems like Web-service applications [39], systems based on wire-
less network technologies like wireless sensor networks [4], online games [23], distributed transportation systems [20], 
medical systems [18], or a software system based on electronic control units in a car or plane [8]. During system evolution, 
often one open system is replaced by another one—for example, when new features have been implemented or bugs have 
been fixed. This requires a refinement notion that preserves a certain correctness criterion.

In this paper, we model an open system as a Petri net with finitely many states. As a minimal correctness criterion 
for successful communication, bounded responsiveness demands that an open system and its environment always have the 
possibility to terminate or to communicate, while their composition is finite-state and, in particular, the number of pending 
messages never exceeds a previously known bound; the environment is called a partner then. An open system is in bounded 
responsiveness conformance with another one, if it can replace the latter without affecting this property. Responsiveness has 
gained interest because, in addition to deadlock freedom, it also ensures the possibility to communicate, which is crucial in 
the setting of interacting open systems. An example for the importance of responsiveness is Microsoft’s asynchronous event 
driven programming language P [11]. P was used to implement and verify the core of the USB device driver stack that ships 
with Microsoft Windows 8. Thereby, P uses responsiveness for bounded message channels as a combination of termination 
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and interaction while additionally requiring that no message in any channel is ignored forever. We aim at a more general 
notion of responsiveness by focusing solely on the combination of termination and interaction.

In [47], we considered unbounded responsiveness, where an open system and its environment should always have the 
possibility to mutually terminate or to communicate. In this paper, we study bounded responsiveness for two reasons: 
First, in [37], we showed conformance for unbounded responsiveness to be undecidable. Second, in practice, distributed 
systems operate on a middleware with buffers that are of bounded size. The actual buffer size can be the result of a 
static analysis of the underlying middleware or of the communication behavior of an open system, or simply be chosen 
sufficiently large. In recent work [48], we gave a trace-based characterization for bounded responsiveness conformance, thereby 
adapting and combining results from the unbounded variant in [47] and work on traces that cannot be used reliably by any 
controller [30]. Due to the latter traces, conforming systems may violate language inclusion.

Our contribution in this paper is threefold. First, based on the novel characterization in [48], we prove bounded respon-
siveness and conformance to be decidable. We provide a decision algorithm for each problem and analyze its computational 
complexity. In [48], we mainly considered bounded responsiveness without final markings. The practically attractive but 
more involved approach, where also reachability of a final marking counts as successful communication, was only sketched 
in [48]. In this paper, all results are elaborated in detail, taking final markings into account. Second, we present a finite 
characterization of the infinite set of conforming nets with the help of a maximal partner [31]. A maximal partner may 
serve as an alternative decision procedure for conformance, as well as a starting point for conformance checking [35] or 
model discovery [36] in case no formal model of the implementation is given. In contrast to the maximal partner for 
deadlock freedom or less general variants of responsiveness [33,31,40], our construction of a maximal partner is up to ex-
ponentially smaller. Third, we present an implementation of the decision procedure for conformance and evaluate it using 
industrial-sized open systems.

Like in our previous works [45,47,48], we contribute to a general theory for open systems and consider an asynchronous 
communication scheme with unordered, unbounded, and loss-free buffers. Although we present only the theory, open sys-
tems specified in industrial languages such as WS-BPEL [21] or BPMN [9] can be translated into our formal model and then 
be analyzed [24,27].

We recall some background in Sect. 2, including bounded responsiveness, conformance, and a trace-based characteriza-
tion thereof in the presence of final states. Sect. 3 proves the decidability of bounded responsiveness and conformance for 
bounded responsiveness. In Sect. 4, we present alternative decision procedures that are based on the notion of a maximal 
partner. We present an implementation of the decision procedure and evaluate it, using industrial-sized open systems in 
Sect. 5. We close with a discussion of related work in Sect. 6 and a conclusion in Sect. 7.

2. Preliminaries

This section provides the basic notions, such as Petri nets, open nets for modeling open systems, environments for 
describing the semantics of open nets, and a trace-based semantics for bounded responsiveness.

For two sets A and B , let A � B denote the disjoint union; writing A � B implies that A and B are implicitly assumed to 
be disjoint. We employ labeled transition systems (LTSs) S = (Q , δ, qS , �in, �out, λ) extended by an initial state qS ∈ Q and 
a state labeling function λ : Q → N. The transition labels are any one of input actions ∈ �in , output actions ∈ �out , or the 
internal action τ �∈ � = �in � �out . Thus, the transition relation δ is a subset of Q × � � {τ } × Q . Introducing an LTS S also 
implicitly introduces its components Q , δ, qS , �in, �out, λ or �; the same applies to other structures later on. We employ 
the standard definitions of finite, τ -free, and deterministic; two LTSs are action-equivalent if they have the same sets of input 
and output actions. We write q x−−→ q′ for (q, x, q′) ∈ δ and q x−−→ if there exists a state q′ such that q x−−→ q′ , and extend 
this to transition sequences. If q v−−→ q′ (q v−−→) and w ∈ �∗ is obtained from v by removing all τ labels, then we write 
q w==⇒ q′ (q w==⇒). For two action-equivalent LTSs S1 and S2, a binary relation � ⊆ Q 1 × Q 2 is a simulation (weak simulation) 
relation if for all (q1, q2) ∈ �, for all x ∈ �1 � {τ } and for all states q′

1 ∈ Q 1 such that q1
x−−→ q′

1, there exists a state q′
2 ∈ Q 2

such that q2
x−−→ q′

2 (q2
x==⇒ q′

2) and (q′
1, q

′
2) ∈ �. S1 is simulated (weakly simulated) by S2 if there exists a simulation 

(weak simulation) relation relating their initial states qS1 and qS2 . If � and �−1 are simulations (weak simulations), then �
is a bisimulation (weak bisimulation) relation. S1 and S2 are bisimilar (weakly bisimilar) if there exists a bisimulation (weak 
bisimulation) relation relating their initial states qS1 and qS2 .

A trace of an LTS S is a word w ∈ �∗ such that qS
w==⇒; the language L(S) of S is the set of all traces of S. We define 

Li(S) = {w ∈ �∗ | qS
w==⇒ q ∧ λ(q) = i} as the language of S restricted to traces leading to states labeled with i ∈ N. For 

words v and w , we denote with v � w that v is a prefix of w , and ε denotes the empty word.

2.1. Petri nets

We use Place/Transition Petri nets extended by either transition labels or—later—specific interface places.

Definition 1 ((Labeled) net). A net N = (P , T , F , mN , �) consists of finite disjoint sets P of places and T of transitions, a flow 
relation F ⊆ (P × T ) � (T × P ), an initial marking mN , where a marking m : P → N is a multiset over the set P , and a set �
of final markings.
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