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a b s t r a c t

Introduction: To develop real-time image processing for image-guided radiotherapy, we evaluated sev-
eral neural network models for use with different imaging modalities, including X-ray fluoroscopic image
denoising.
Methods & materials: Setup images of prostate cancer patients were acquired with two oblique X-ray flu-
oroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a
convolutional neural network (rCNN). We changed the convolutional kernel size and number of convo-
lutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The
ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE)
method of image processing. Network models were trained to keep the quality of the output image close
to that of the ground-truth image from the input image without image processing. For image denoising
evaluation, noisy input images were used for the training.
Results: More than 6 convolutional layers with convolutional kernels >5 � 5 improved image quality.
However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers
to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pool-
ing and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable
image quality.
Conclusions: Use of our suggested network achieved real-time image processing for contrast enhance-
ment and image denoising by the use of a conventional modern personal computer.

� 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The latest image-guided radiotherapy algorithms have
improved positional accuracy by using medical imaging techniques
such as fluoroscopy [1,2]. Patient positional verification is routinely
performed by 2D-3D image registration using X-ray images and
reference digitally reconstructed radiography images before irradi-
ation [3–5].

Tumour or implanted fiducial marker position can be detected
in real time by X-ray fluoroscopic imaging during treatment [6–
8], solving the problem of the inconsistency of the relationship
between patient surface and internal tumour motion [9]. Although
the deliberately high contrast of fiducial markers makes them easy
to detect on fluoroscopic images, implantation is invasive. A sec-
ond approach is to detect tumour motion directly without fiducial
markers (markerless tracking technique) [10–14]. This technique
detects tumour position using fluoroscopic images, but tumour
detection accuracy is strongly affected by image quality. Several

types of image processing (e.g., dynamic range compression,
denoising, contrast enhancement, frequency modulation) have
already been integrated into medical imaging modalities, but
obtaining good image quality may require that computation time
be increased to an unrealistic degree. Commercial imaging systems
have achieved real-time image processing using specialized hard-
ware, such as a graphics processing unit (GPU) or field pro-
grammable gate-array (FPGA), but both GPU and FPGA require
more advanced programing skills and longer development time
than CPU-based programming.

Deep learning has improved performance in artificial intelli-
gence more than conventional machine learning. It is employed
in everyday technologies such as search engines and speech recog-
nition. In medical imaging, deep learning has been used for image
denoising [15,16] and bone-density suppression [17]. Several deep
learning frameworks are now publicly available and do not require
specialised programing skills or extended development time. Once
a network model is trained, computation time is rapidly decreased
by the utilization of GPU.
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In this study, we evaluated several types of network model to
achieve real-time image processing. Various types of image pro-
cessing are needed for different purposes; therefore we selected
Contrast-limited Adaptive Histogram Equalization (CLAHE) [18]
and extended it to add image denoising function, because it allows
changes in pixel values to improve image contrast by analysing
pixel information in large areas rather than pixel by pixel. Our goal
was for the deep learning network model to be able to perform
CLAHE in real time, allowing it to be extended to other image pro-
cessing algorithms.

2. Materials and methods

2.1. Image preparation

A total of 430 X-ray images were acquired in 42 prostate cancer
patients during carbon-ion scanning beam treatment in our hospi-
tal. The images were acquired by two oblique X-ray fluoroscopic
units used in patient setup procedures [19]. More than two pairs
of X-ray images were acquired for each treatment fraction. The
X-ray imaging system is an indirect type of dynamic flat panel
detector (DFPD) (PaxScan 3030 + �, Varian Medical Systems, Palo
Alto, CA) with an image area size of 296 � 296 mm, pixel size of
388 lm, and dynamic range of 14 bits. Image matrix size was
768 � 768. A DFPD is installed on either side of the vertical irradi-
ation port at 35 and 325 degrees, respectively, with the X-ray tubes
installed under the floor. Distances from the room isocenter and
source-image receptor distance are 1690 mm and 2390 mm,
respectively. Imaging X-ray conditions are 100 kV tube voltage,
100 mA tube current, and 4 ms of radiation exposure per image.

Two types of input image were prepared; the first was a mean
of ten fluoroscopic image frames to reduce the magnitude of image
noise for image processing performance evaluation, and the second
was a single frame image (noisy image) for image processing with
image denoising evaluation. The ground-truth image was the first
input image applied to CLAHE with the number of histogram bins
used for histogram equalization of 256. CLAHE performs histogram
equalization in pixel values within a whole image or image regions.
Output small image regions were combined using image interpola-
tion. By doing this, CLAHE improved image contrast. CLAHE was
performed using a commercial programming environment
(MATLAB R2016a�, Mathworks, Natick MA, USA).

2.2. Network architecture

Neural network architectures such as autoencoder (AE) [20–23]
and convolutional neural network (CNN) [24–26] were often used
for medical image processing. In the early days, these networks
were shallow due to technical limitations. However, current CNN
and AE have achieved better performance by applying deep archi-
tecture (details were described in the next section). We, therefore,
designed two types of network structure to extend to both image
denoising and CLAHE processing; a residual convolutional autoen-
coder (rCAE) and a residual convolutional neural network (rCNN).
These network structures were involved in convolution, batch nor-
malisation (BN), rectified linear units (ReLU), pooling, and upsam-
pling layers. The network template was defined to express the
respective network structures clearly as shown in Fig. 1a, and the
following five parameters were defined: the parameter k is the
convolution kernel size, m and p are the number of convolutional
layers before the first pooling layer and after the last upsampling
layer, respectively. The parameter n is the number of convolutional
layers between pooling and upsampling layers. The parameter q is
the number of pairs of pooling-upsampling layers.

Pixels of zero value were inserted into the input image bound-
ary region before generating convolution to keep output image size

and input image size to be the same. A default number of the con-
volutional filter was 64, and the convolutional filter size was mul-
tiplied by a factor of 2 and 0.5 after pooling and upsampling layers,
respectively. The convolutional stride was 1. The number of the
convolutional filter size at the last layer was 1. A pooling layer
using max-pooling was selected, with kernel and stride sizes
2 � 2 pixels and 2 pixels, respectively. The upsampling layer
selected used a bilinear weight filter and had a kernel size of
4 � 4 pixels and stride of 2 pixels.

2.2.1. Residual convolutional autoencoder (rCAE)
The autoencoder learns a low-dimensional representation

(compressed approximation) of the input image by encoding and
decoding through the network [20–23]. To improve autoencoder
performance, a deeper autoencoder was introduced [15]. While a
convolutional layer is better for image processing to generate an
image feature map than the inner product layer used in an autoen-
coder, CAE was introduced by replacing the inner product layer
with a convolutional layer [16].

The basic structure of the CAE in this study placed in order as
convolution plus pooling and upsampling plus convolution, and
added input data. By doing this, a CAE with residual net was con-
structed. Eight types of rCAE was designed by changing the num-
ber of pooling-upsampling layers (the range of tested parameters
k = 3, m = 2, 3, n = 2, 3, p = 1, 2, q = 1–3) (Nos. 1, 2, and 5), and the
number of convolutional layers (the range of tested parameters
k = 3, m = 1–6, n = 1–6, p = 1–5, q = 1) (Nos. 3–8). Convolutional
kernel size in rCAE was 3 � 3 pixels. For example, an rCAE with
two pairs of pooling-upsampling layers and three convolutions is
shown in Fig. 1b, and can be expressed by the parameter (k = 3,
m = 3, n = 3, p = 2, q = 2).

2.2.2. Residual convolutional neural network (rCNN)
The rCNN was involved in one or multiple sets of convolution,

BN, and ReLU layers, the last layer being a convolutional layer with
a single feature map and the input image being added after the last
layer. We changed the convolutional kernel size and the number of
convolutional layers; thus, a total of nine networks were designed
(the range of tested parameters k = 3, 5, 7, m = 3, 6, 9, n = 0, p = 0,
q = 0) (Nos. 9–17). In one example, three sets of convolutions with
the kernel size of 7 � 7 pixels, BN, and ReLU layers are shown in
Fig. 1c; this can be described by the parameters (k = 7, m = 3,
n = 0, p = 0, q = 0).

In order to shrink input data size, pooling layer was set after
importing input data, and then multiple convolutional layers were
set, and after or between them, an upsampling layer was set. We
changed the number of convolutional layers, all with a kernel size
of 3 � 3 pixels (the range of tested parameters k = 3, m = 0, n = 3, 6,
9, 12, p = 0, 3, 5, q = 1) (Nos. 18–23). One example of this included a
pooling, six convolutions, upsampling, three convolutions (Fig. 1d).
This network can be expressed by the parameters (k = 3, m = 0,
n = 5, p = 2, q = 1).

2.3. Network training

The input image and ground-truth image sets were normalized
to the range of 0–1, except the irradiation port cover edge region
shown as a white straight line on the image (marked as arrow in
Fig. 3a). Due to the limited GPU memory, all images were resized
to 384 � 384 pixels usingMATLAB before importing to the network.
Networkmodelswere trained to be close to the quality of the output
image to that of the ground-truth image from the input image. All
images were rotated 90 and 180 degrees to increase the number
of training images (data argumentation), and not applied image flip
because of symmetric structures in pelvic region. A total of 3544
image pairs (input images and ground-truth images) were used
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