
JID:TCS AID:11342 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.224; Prn:17/10/2017; 13:57] P.1 (1-16)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Sufficient conditions for the marked graph realisability of

labelled transition systems

Eike Best 1, Thomas Hujsa 1,∗, Harro Wimmel 1

Department of Computing Science, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 April 2017
Received in revised form 8 September 2017
Accepted 2 October 2017
Available online xxxx

Keywords:
Synthesis
Labelled transition system
Petri net
Realisability
Marked graph

This paper describes two results within the context of Petri net synthesis from labelled
transition systems. We consider a set of structural properties of transition systems, and we
show that, given such properties, it is possible to re-engineer a Petri net realisation into
one which lies inside the set of marked graphs, a well-understood and useful class of Petri
nets.
The first result originates from Petri net based workflow specifications, where it is
desirable that k customers can share a system without mutual interferences. In a Petri net
representation of a workflow, the presence of k customers can be modelled by an initial
k-marking, in which the number of tokens on each place is a multiple of k. For any initial
k-marking with k ≥ 2, we show that other desirable assumptions such as reversibility and
persistence suffice to guarantee marked graph realisability. For the case that k = 1, we
show that the existence of certain cycles, along with other properties such as reversibility
and persistence, again suffices to guarantee marked graph realisability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In order to be useful, a system is normally required to be well-behaved. For example, in a business workflow [1], a cus-
tomer’s activity should not impede other customers’ concurrent (or future) activities [2,3]. Similarly, in a security operating
system [4], it should be possible for several users to share a system without being aware of each other. Often, such systems
are also required to be reversible, meaning that their initial states always remain reachable. If several such well-behavedness
properties are postulated simultaneously, it may happen that they entail strong consequences. The present paper studies two
such implications in the context of systems modelled by persistent Petri nets [5–7]. Persistence disallows true conflicts and
is sometimes, but not always, required of workflow models [3].

In a Petri net representation of a workflow, the presence of k customers can be modelled by initial markings in which
the number of tokens on each place is a multiple of k. Such markings are called k-markings and are written as k·M0. For
instance, Fig. 1 depicts a Petri net �1 with an initial 4-marking. Intuitively, this might model four individual customers who
are using a workflow simultaneously.

* Corresponding author.
E-mail addresses: eike.best@informatik.uni-oldenburg.de (E. Best), hujsa.thomas@gmail.com (T. Hujsa), harro.wimmel@informatik.uni-oldenburg.de

(H. Wimmel).
1 Funding: This work was supported by DFG (German Research Foundation) through grant Be 1267/16-1 ASYST (Algorithms for Synthesis and Pre-

Synthesis Based on Petri Net Structure Theory).

https://doi.org/10.1016/j.tcs.2017.10.006
0304-3975/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2017.10.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:eike.best@informatik.uni-oldenburg.de
mailto:hujsa.thomas@gmail.com
mailto:harro.wimmel@informatik.uni-oldenburg.de
https://doi.org/10.1016/j.tcs.2017.10.006

JID:TCS AID:11342 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.224; Prn:17/10/2017; 13:57] P.2 (1-16)

2 E. Best et al. / Theoretical Computer Science ••• (••••) •••–•••

�1 a

b

T S1
s2

s3

s4

s1

s0

a

b

a

b
abba

�1/4 a

b

Fig. 1. A 4-marked Petri net �1 (left-hand side) and its reachability graph (i.e., state space), represented by a labelled transition system (middle) with initial
state s0 (encircled). The system �1/4 (defined structurally as �1, but with a quarter of the initial marking) is shown on the right-hand side.

Such a system should be separable, that is, it should behave in the same way as if its initial state is divided by k and
the resulting system is executed k times concurrently. For instance, in Fig. 1, �1 has the same state space as four disjoint
parallel instances of �1/4. It has been proved in [8] that plain, bounded, reversible, and persistent Petri nets2 are already
guaranteed to be separable. It is also known [3,9] that marked graphs are separable. In the present paper, we shall augment
this work by the following two results:

• Let a system be described by a persistent Petri net which is plain, bounded, reversible, and has an initial k-marking
with k ≥ 2. Then there exists a marked graph Petri net [10] with an isomorphic state space.

• Let a system be described by a persistent Petri net which is plain, safe,3 reversible, and has, in its reachability graph, a
cycle containing each transition once. Then there exists a marked graph Petri net with an isomorphic state space.

These results enrich the domain of Petri net synthesis from a labelled transition system, the latter being given as a
specification to be implemented by a Petri net. Indeed, one can first check the existence of a Petri net realisation and build
one when possible, and then exploit these new conditions to determine the existence of a marked graph solution satisfying
the same specification. Moreover, both methods are constructive, the k-marked case (first item above) needing a prior result,
and the safe case (second point above) being described in the sequel, so that they provide algorithms that re-engineer a
Petri net solution into a marked graph satisfying the same specification.

The main part of the paper is organised as follows. Section 2 presents the technical background (labelled transition
systems and Petri nets). In Section 3, we introduce some key behavioural notions necessary to understand the rest of the
paper. Section 4 contains the proof of our first main theorem, and in Section 5, we proceed to proving the second main
result, as sketched above. Section 6 concludes and presents some ideas for further research.

2. Transition systems and Petri nets

2.1. Labelled transitions systems

A labelled transition system (lts, for short) with initial state is a tuple T S = (S, T , →, s0) with nodes (states) S , edge
labels T , edges →⊆ (S × T × S), and an initial state s0 ∈ S . It is called finite when S and T (and hence also →) are finite
sets. A label t is enabled at s ∈ S , written as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈ →. We also write s[t〉s′ if (s, t, s′) ∈ →. A walk of
length � ∈N is a sequence

η = r0[t1〉r1 . . . r�−1[t�〉r�

where r0, . . . , r� ∈ S , and for 1 ≤ j ≤ �, r j−1[t j〉r j . The walk η is elementary if it does not contain the same node twice,
except perhaps r0 = r� , in which case the walk forms a cycle. We write r0[σ 〉r� (or r0

σ−→ r�), where σ = t1 . . . t� ∈ T ∗ , and
say that σ is enabled (or firable, or feasible) at r0, and that r� is reachable from r0 by σ (or by η, in order to emphasise
the intermediate states). The set of states reachable from r0 is denoted by [r0〉.

A function � is called a T -vector if � : T → N, and a binary T -vector if � : T → {0, 1}. The support of a T -vector � is
supp(�) = {t ∈ T | �(t) > 0}. We denote by 1|T | (or by 1 when no confusion is possible) the binary T-vector whose support
is T . Two T -vectors �1, �2 are label-disjoint if ∀t ∈ T : �1(t) = 0 ∨ �2(t) = 0. For a sequence σ ∈ T ∗ , the Parikh vector
�(σ) of σ is a T -vector defined by �(σ)(t) = the number of occurrences of t in σ .

An lts T S = (S, T , →, s0) is called totally reachable if [s0〉 = S (i.e., every state is reachable from s0); (forward) deter-
ministic if for any states s, s′, s′′ ∈ [s0〉 and label t ∈ T , (s[t〉s′ ∧ s[t〉s′′) ⇒ s′ = s′′ (i.e., the state reached from s after firing
t is unique); backward deterministic if for any states s, s′, s′′ ∈ [s0〉 and label t ∈ T , (s′[t〉s ∧ s′′[t〉s) ⇒ s′ = s′′; live if ∀t ∈ T
∀s ∈ [s0〉 ∃s′ ∈ [s〉 : s′[t〉 (i.e., transitions remain eventually firable); reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e., s0 always remains
reachable); (forward) persistent if for all reachable states s, s′ , s′′ , and labels t, t′ , if s[t〉s′ and s[t′〉s′′ with t �= t′ , there is

2 Plainness means that there are no arc weights > 1 in the Petri net. Boundedness means that the state space is finite. Reversibility means that the initial
state can be reached from every reachable state.

3 Safeness means that the places of the net are binary: they may contain either 0 or 1 token.

https://isiarticles.com/article/152181

