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Data Nets are a version of colored Petri nets in which tokens carry data from an infinite 
and linearly ordered domain. This is a very expressive class, though coverability and 
termination remain decidable. Those problems have recently been proven complete for the 
Fωωω class in the fast growing complexity hierarchy. We characterize the exact complexity 
of Unordered Data Nets (UDN), a subclass of Data Nets with unordered data. We bound 
the length of bad sequences in well-quasi orderings of multisets over tuples of naturals by 
adapting the analogous result by Schmitz and Schnoebelen for words over a finite alphabet. 
These bounds imply that both problems are in Fωω . We prove that this result is tight by 
constructing UDN that weakly compute fast-growing functions and their inverses. This is 
the first complete problem for Fωω with an underlying wqo not based on finite words over 
a finite alphabet.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Higman’s Lemma [12] is a well-known result that states that whenever (X, ≤) is a well-quasi order (wqo) then the 
embedding order (X∗, ≤∗) in the set X∗ of finite words over X is also a wqo. As a consequence, and because ≤∗ is a 
refinement of the multiset order ≤⊕ (s ≤∗ s′ implies s ≤⊕ s′), the order ≤⊕ over the set of multisets X⊕ is also a wqo.

However, multisets are intuitively a simpler domain than words. This is witnessed by their maximal ordinal types [14,20], 
which can be seen as a measure of their size. Indeed, if the order type of X is α then the order type of X∗ is ωωα

[14], 
while the order type of X⊕ is only ωα [24].1

The ordinal type of a wqo has recently been used in several works [6,21,8,11,16] to characterize the ordinal-recursive 
complexity of (the verification of several problems for) monotonic systems over an underlying wqo, which have been called 
Well-Structured Transition Systems (WSTS) [2,9]. Prominent examples of such WSTS are Petri nets/VASS, affine nets [10], 
Lossy Channel Systems [1,5] or Data Nets [15]. Lossy Channel Systems (LCS) can be seen as finite state machines communi-
cating over FIFO unreliable channels. Hence, if � is the (finite) alphabet of messages, the state space is given by Q × (�∗)k

for some finite set of states Q and k ≥ 0.
Data Nets [15] are a very general (but monotonic) extension of Petri nets in which tokens are taken from a linearly 

ordered and dense domain, and whole-place operations like transfers or resets are allowed. They can be seen as arrays or 
lists of Petri nets (with whole-place operations) communicating by rendezvous and broadcasts [4]. Hence, the state space of 
a Data Net is given by some (Nk)∗ . It was shown in [3] that Petri Data Nets (Data Nets in which no whole-place operations 
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1 This holds only for ω ≤ α < ε0, which will be the case in the paper.
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or broadcasts are allowed) are already as expressive as Data Nets. Data Nets are used e.g. in [7], to give semantics and prove 
decidability results of a very expressive formal model of asynchronous event-driven programs, allowing dynamic creation of 
concurrent tasks, events and threads.

A natural subclass of Data Nets is that of Unordered Data Nets (UDN), that is, the subclass of Data Nets in which nets are 
not in an array of nets, but in a pool of nets. Unlike in Data nets, where the underlying state space is based on finite words 
of tuples of naturals, in the case of Unordered Data Nets the state space is based on finite multisets of such tuples. Thus, in 
the unordered case the state space can be given by some (Nk)⊕ . Unordered Data Nets are very closely related to the class 
of so-called ν-Petri nets. It can be seen as a restriction of UDN without broadcasts, so that each transition affects only a 
constant number of names given by the transition. In ν-Petri nets tokens carry pure identifiers, that can only be compared 
with each other by equality, and can be created fresh (different from all other existing identifiers), which can be used for 
the modeling of distributed authentication protocols (see for instance [17]). Also, ν-Petri nets and its polyadic version (in 
which tokens are tuples of identifiers) are in turn closely related to process algebra with name creation (e.g., channel names 
in the π -calculus) [19].

On the one hand, ν-Petri Nets (UDN without whole-place operations or broadcasts) have been recently proven complete 
for the Fω·2 class of double Ackermannian problems in the fast-growing complexity hierarchy [16]. On the other hand, (full) 
Data Nets have been recently proven to be complete for the Fωωω class in the fast-growing complexity hierarchy [11]. We 
fill part of the gap in between by proving that UDN are complete for Fωω .

Our proof relies on the techniques developed by Schnoebelen and Schmitz, both for the upper bounds as for the hardness 
result. For the upper bounds, we adapt the techniques in [21] to bound the length of (controlled) bad sequences in (Nk)⊕ , 
that is, sequences s0, ..., sk such that si � s j for all i < j. These upper bounds give us ordinal recursive upper bounds for the 
coverability and termination problems. This result is general, and could therefore be used for other monotonic systems with 
a state space based on multisets of tuples of naturals. For the lower bound, we show (i) how we can encode ordinals below 
ωωω

as markings of UDN and (ii) how we can use this encoding to perform weak computations of fast-growing functions 
and their inverses. This entails the corresponding lower bounds, by using the device presented for instance in [23].

Thus, the complexity of UDN sits at the exact same level as LCS, which were proven to be Fωω -complete in [6,21]. Let 
us remark that, because the state spaces of UDN ((Nk)⊕) and the state spaces of LCS (Q × (�∗)k) are very different (though 
with comparable order types), it does not seem possible to perform direct reductions from one model to the other, which 
would yield alternative (and perhaps more direct) proofs of our results. We leave these reductions as open problems.

Finally, let us comment that the construction reducing Data nets to Petri Data Nets (removing broadcasts) [3] is no longer 
correct in the case of UDN. We will see that our hardness result heavily relies on broadcast operations that, for instance, 
empty a given place in all tuples. This is not a coincidence, since UDN (hyper Ackermannian) are strictly harder than ν-Petri 
Nets (double Ackermannian).

The rest of the paper is structured as follows. Section 2 presents some definitions, notations and results we use in 
the paper. In Sect. 3 we obtain upper bounds for the length of controlled bad sequences in multiset wpos. In Sect. 4 we 
define UDNand obtain an upper bound for their coverability and termination problems. In Sect. 5 we consider lower bounds. 
Sect. 6 presents our conclusions and some open problems.

2. Preliminaries

Well orders. (X, ≤X ) is a quasi-order (qo) if ≤X is a reflexive and transitive binary relation on X . For a qo we write x <X y
iff x ≤X y and y �X x. A partial order (po) is an antisymmetric quasi-order. A po (X, ≤) is total (or linear) if for any x, x′ ∈ X
either x ≤ x′ or x′ ≤ x. We will shorten (X, ≤X ) to X when the underlying order is obvious. Similarly, ≤ will be used instead 
of ≤X when X can be deduced from the context.

We say a (finite or infinite) sequence (xi)i≤ω is good if there are indices i < j such that xi ≤ x j . Otherwise, we say it is 
bad. A po X is a well partial order (wpo) if every bad sequence is finite.

If X1 and X2 are wpos, their Cartesian product X1 × X2 is well ordered by (x1, x2) ≤X1×X2 (x′
1, x

′
2) iff x1 ≤X1 x′

1 and 
x2 ≤X2 x′

2. Their disjoint sum X1 + X2 = ({1} × X1) ∪ ({2} × X2) is well partially ordered by 〈i, x〉 ≤X1+X2 〈 j, x′〉 iff i = j and 
x ≤Xi x′ .
Functions. If X and Y are ordered, a mapping f : X → Y is increasing (resp. strictly increasing) if x ≤X y implies f (x) ≤Y f (y)

(resp. if x <X y implies f (x) <Y f (y)); f is an order embedding (shortly: embedding) if f (x) ≤Y f (x′) iff x ≤X x′ . A bijective 
order embedding is called an order isomorphism (shortly: isomorphism). Two po X and Y are isomorphic if there is an 
isomorphism between them, in which case we write X ≡ Y .
Multisets. Given a set X , we denote by X⊕ the set of finite multisets of X , that is, the set of mappings m : X → N with a 
finite support sup(m) = {x ∈ X | m(x) = 0}. We use the set-like notation for multisets when convenient, with {xn} describing 
the multiset with n occurrences of x. We use + and − for multiset addition and subtraction, respectively defined by 
(m + m′)(x) = m(x) + m′(x) and (m − m′)(x) = max(m(x) − m′(x), 0). If X is a wpo then so is X⊕ ordered by ≤⊕ defined by 
{x1, . . . , xn} ≤⊕ {x′

1, . . . , x
′
m} if there is an injection h : {1, . . . , n} → {1, . . . , m} such that xi ≤X x′

h(i) for each i ∈ {1, . . . , n}.
Words. Given a set X , any u = x1 · · · xn with n ≥ 0 and xi ∈ X , for all i ∈ {1, ..., n}, is a finite word on X . We denote by X∗
the set of finite words on X . If n = 0 then u is the empty word, which is denoted by ε. If X is a wpo then so is X∗ ordered 
by ≤X∗ which is defined as follows: x1 . . . xn ≤X∗ x′

1 . . . x′
m if there is a strictly increasing mapping h : {1, . . . , n} → {1, . . . , m}

such that xi ≤X x′
h(i) for each i ∈ {1, . . . , n} (Higman’s Lemma). This is called the embedding order, in contrast with the 
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