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Typed models of connector/component composition specify interfaces describing ports 
of components and connectors. Typing ensures that these ports are plugged together 
appropriately, so that data can flow out of each output port and into an input port. 
These interfaces typically consider the direction of data flow and the type of values 
flowing. Components, connectors, and systems are often parameterised in such a way 
that the parameters affect the interfaces. Typing such connector families is challenging. 
This paper takes a first step towards addressing this problem by presenting a calculus of 
connector families with integer and boolean parameters. The calculus is based on monoidal 
categories, with a dependent type system that describes the parameterised interfaces of 
these connectors. We use families of Reo connectors as running examples, and show how 
this calculus can be applied to Petri Nets and to BIP systems. The paper focuses on the 
structure of connectors—well-connectedness—and less on their behaviour, making it easily 
applicable to a wide range of coordination and component-based models. A type-checking 
algorithm based on constraints is used to analyse connector families, supported by a proof-
of-concept implementation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Software product lines provide the flexibility of concisely specifying a family of software products, by identifying com-
mon features of functionality among these products and automatising the creation of products from a selection of relevant 
features. Interesting challenges in this domain include how to specify families and combinations of features, how to au-
tomatise the creation process, how to identify features from a collection of products, and how to reason about (e.g., verify) 
whole families of products.

This paper investigates such variability in coordination languages, i.e., it studies connector families that exogenously de-
scribe how (families of) components are connected. The key problem is that different connectors from a single family can 
have different interfaces, i.e., different ways of connecting to other connectors. Hence, specifying and composing such fami-
lies of connectors while guaranteeing that interfaces still match becomes non-trivial.

Consider, for example, the simple component composition on Fig. 1. In our calculus we can write this composition as 
sensor ⊗ clock ; worker, where ‘⊗’ has higher precedence and denotes parallel composition, and ‘;’ denotes sequential com-
position. In this scenario type-checking means guaranteeing that the interfaces match when plugging these 3 components 
together.
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Fig. 1. Composition of components: a sensor produces a pair of values, a clock produces a time stamp, and the worker produces a database query to store 
the sensor values.

Fig. 2. Composition of families of components: combinations of sensors and clocks are composed with a parameterised worker (left) and with a simpler 
worker after some extra coordination (right).

The case becomes more complex when components can be configured to have varying interfaces. For example, if the 
clock can chose to produce a pair of integers or a string based on a configuration parameter b, or if the sensor components 
is replaced by a number n of sensors running in parallel. This scenario is depicted in Fig. 2, where reasoning about com-
position of such families is more complex than that of instantiated components. One can, for example, either (1) define a 
parameterised worker (left side of the figure) and require the interfaces to match for at least some instances of the families, 
or (2) replace the connections by a (parameterised) connector that combines the values of the sensors into an interface that 
matches the one from the worker (right side of the figure).

The first option (left of Fig. 2) can be written in our calculus as λn :N, b :B · (sensorn ⊗ clock(b) ; worker(n, b)), where 
parameters are written as lambda abstractions, and exponentials replicate a given component or connector. An alterna-
tive and more modular expression for this scenario, also expressible in our calculus, could be (λn :N · sensorn) ⊗ (λb :B ·
clock(b)) ; (λn′ :N, b′ :B · worker(n′, b′)), where each composition block is itself parameterised. This modular version is im-
plicitly imposing the parameters n and b to match the parameters n′ and b′ of the worker, hence the resulting composition 
is restricted by constraints over the parameters that make the composition be well-typed.

The second option (right of Fig. 2) can be written in our calculus as λn :N, b :B · (sensorn ⊗ clock(b) ; (unzip(n); (∇n ⊗
∇n)) ⊗ idString ; worker), where unzip(n) is a connector that swaps the orders of 2 ∗ n connections (that will be formally 
specified later in this paper) and ∇n is a connector that merges n dataflows into one. The type-system of our calculus yields 
that this connector is well-typed exactly when b is false and for any possible n, i.e., the clock component must be configured 
with b = false in order to have a String outgoing interface, so it can be composed with idString . This constraint is explicit in 
our types; more specifically, the type of this connector is ∀x :N, b :B · (0 → DB-query) |b=false , indicating that it has no inputs, 
it has a single output with type DB-query, and it is restricted by the constraint b = false.

Summarising, the main contributions of this paper are:

• a calculus for families of connectors with constraints;
• a type system to describe well-defined compositions of such families;
• a semantics for families of connectors given by the Tile Model [1]; and
• a constraint-based type-checking algorithm for this type system.

This paper extends a previous publication at FACS 2015 [2] mainly by (1) formalising the semantics of connector families 
using the Tile Model, which was previously used briefly for the basic connector calculus, and by (2) instantiating the typed 
connector calculus with Petri Nets and with BIP systems.

Connectors are defined incrementally. We start by defining a basic connector calculus for composing connectors inspired 
by Bruni et al.’s connector algebra [3,4] (Section 2). This calculus is then extended with parameters and expressions, over 
both integers and booleans (Section 3), being now able to specify connectors (and interfaces) that depend on input param-
eters. Both the basic and the extended calculus are accompanied by a type system; the latter is an extension of the former, 
allowing integer and boolean parameters (and effectively becoming a dependent type system). Section 4 introduces connec-
tor families, by explicitly incorporating constraints over the parameters, and by lifting the composition of connectors to the 
composition of constrained and parameterised connectors. Section 5 describes an algorithm to type-check connector families 
with untyped ports, i.e., when the type flowing over each port is not relevant, and presents our prototype implementation. 
Typed connector calculus is used to model families of Petri Nets and BIP connectors in Section 6. This paper wraps up with 
related work (Section 7), conclusions and future work (Section 8).
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