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1. INTRODUCTION

In context of logical Discrete Event Systems (DESs), the
discrepance between nominal system behavior and ob-
served system behavior, has been formalized in Roth et al.
(2011) introducing residuals to take into account two very
generic fault symptoms, unexpected and missed behavior,
leading to observed but unexpected events and missed
event observations, respectively. In Basile et al. (2016c)
and Basile et al. (2016a) these two concepts have been ex-
tended to timed DESs context and applied to the identifi-
cation and model repair of timed net systems, respectively.
In Basile et al. (2016a) a model repair approach, based on
the formulation of a Mixed Integer Linear Programming
Problem (MILPP) whose solution provides the corrections
needed to repair the nominal model, is presented.

In this paper, the approach presented in Basile et al.
(2016a) is improved. In detail, the repair algorithm is in-
cremental, i.e., it works on the current model and previous
corrections to the model are not modified, and it works also
when concurrent deviations from the nominal behavior are
observed. Moreover, in addition to the extension of the
bounds of the firing time of each nominal transition firing,
the adding of a single transition for each fault is used to
repair the model at current time. Finally, the algorithm
complexity does not depend on the length of the observed
sequences, since the search for markings enabling a fault
is conducted exploring the neighborhood of the current
marking.

The problem addressed here is different from net identi-
fication, since only the subnet modeling the unexpected
and missed behavior of the system is identified while the
subnet modeling the timed nominal behavior is assumed to
be known. The reader can refer to Fanti and Seatzu (2008)
for major details about net identification literature.

In Dotoli et al. (2011) can be found some points of
contact with this paper since only a subnet is identified
too, and precisely the unobservable behavior of Petri Net
(PN) models is considered. Apart from the fact that

timed models are not considered, the main difference with
respect to our approach is that it is based not only on
event observation, but also on marking observation. The
problem of modifying the nominal model as a consequence
of changes in the system behavior has been investigated
also in Cabasino et al. (2014), where the deviations are
called faults and the model repair is presented as the
identification of the faulty model of a logical PN system:
the occurrence of a faulty firing sequence (i.e., a sequence
that cannot be generated by the nominal model of the
system) is associated to the unobservable firings of fault
transitions, that must be opportunely added and linked
to the nominal model of the system, to obtain the faulty
model. Hence, also in this case, the structure of the
nominal model is changed.

2. NOTATIONS AND PRELIMINARY ASSUMPTIONS

It is assumed that the reader is familiar with the theory
of PNs. For a complete review about them, the reader is
remanded to Murata (1989).

Definition 1. (TPN system, Seatzu et al. (2013) ). Let I
be the set of closed intervals with a lower bound in the
set of positive rational numbers Q+ and an upper bound
in Q+

⋃
∞. A Time Petri net (TPN) system is the triple

S = �N,m0, I�, where N is a standard P/T net, m0

is the initial marking, and I : T → I is the statical firing
time interval function which assigns a firing interval [lj , uj]
to each transition tj ∈ T .

A transition tj can be fired at time τ if the time elapsed
from the enabling belongs to the interval I(tj); moreover,
an enabled transition must fire if the upper bound of I(tj)
is reached, thus enforcing urgency. ✸

Assumption 1. (Properties of the observed system). The
observed system is modeled by a TPN system with the
following assumptions: 1) Free labeled nets (it is possible
extending the approach to labeled nets with the adding
of some technicalities (see Basile et al., 2016b); 2) Single-
server firing semantic; 3) Enabling memory policy of timed
transitions.
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Definition 2. (Timed firing sequence). A sequence

S = (T1, τ1) . . . (Tq, τq) . . . (TL, τL) ,

where Tq is the set of transitions fired at time τq and
τ1 < τ2 · · · < τL denote firing time instants, is called timed
firing sequence. The position q the couple (Tq, τq) occupies
in the sequence is called time step, so (T1, τ1) is associated
with step 1, (T2, τ2) is associated with step 2 and so on; the
number of couples (Tq, τq) in S is called length L = |S| of
the timed firing sequence.

The notationm[S�m′ is used to denote thatm′ is reached
from m by firing S. ✸

Definition 3. (Timed Language). Given a TPN system
S = �N,m0, I�, its timed language, named L(S), is
defined as the set of timed firing sequences generated by
S from the initial marking m0. ✸

The marking the system reaches after the firing of all the
transitions in Tq is called mq.

Assumption 2. A transition can fire only once in the same
time instant.

However, the results presented in this paper are still valid
removing this assumption, introducing some technicalities.

The set Tq is made up of nq = |Tq| transitions whose firing
is observed at the same instant τq. The firings of these
transitions are enabled either by a marking mk reached at
a time τk < τq or by the firing of another transition fired
at τq with null firing duration.

Definition 4. (Firing Duration). Given a timed transition
tj , fired at the q-th step, enabled at the k-th step, so that
mk[tj�, let mk be the first marking that enables tj since
its previous firing, the function δ(tj , k, q) : T×N×N → Q+

returns the time elapsed from the enabling of tj at τk until
its firing at τq, i.e., δ(tj , k, q) = τq − τk. ✸

From now on, it is referred to δ(tj , k, q) as the firing
duration of transition tj ∈ Tq from the markingmk. When
δ(tj , k, q) = 0 the firing of tj at τq is called immediate,
otherwise, when δ(tj , k, q) > 0, the firing of tj is called
timed.

Let m0 be the initial marking of the system, the set of
candidate markings for the enabling of a transition tj ∈ Tq

can be formally defined as M(tj , q) =
{
mk | ∃S

′

T ,S
′′

T ,

S = S
′

TS
′′

T , m0[S
′

T �mk[S
′′

T �mq, with tj ∈ S
′′

T , k <
q : τk + lj ≤ τq ≤ τk + uj

}
, having cardinality |M(tj , q)|.

The set Tq can be partitioned into the couple of sets
(T t

q , T
im
q ): T t

q = {tj ∈ Tq| ∃k,mk ∈ M(tj, q)} is the set of
transitions fired at τq with timed firing, with cardinality
nt
q = |T t

q |, T
im
q = Tq \ T

t
q , with cardinality nim

q , is the set
of transitions fired at τq with immediate firing.

Immediate firings always follow the timed ones, even if
they are observed at the same time τq. Indeed an imme-
diate firing occurs at the same time it has been enabled,
while a timed firing occurs in a subsequent time respect the
one at which it has been enabled. Consequently, a timed
firing enabled by an immediate firing occurred at time τq,
surely fires in a time greater than τq.

The firing of transitions in the set T t
q is concurrent,

however, each firing can have been enabled at a different

marking. On the other hand, the firing of transitions in
T im
q may be sequential. Given the set of transitions T im

q ,
these transitions can fire in any order, which, anyway, can
include concurrent transition firings.

Denote mq1 the marking reached by firing transitions
belonging to T t

q , Denote mqs , with s ≥ 2, the marking
reached after the immediate firings of transitions.

Given the firing sequence associated to the set T im
q , it can

be considered made up of the union of nim
q disjoint subsets

of concurrent transition firings. Hence, firing of transitions
in T im

q can be considered occurred in nim
q substeps; each

substep is denoted by qs, with s ∈ [2, nim
q + 1]. Finally, it

holds that T im
q =

⋃nim
q +1

s=2 T im
qs

.

3. PROBLEM FORMULATION AND REPAIR
MODEL ALGORITHM

Two techniques are used to repair the system nominal
model to identify a repaired model able to generate the
observed faulty behavior: a) the extension of the transition
firing intervals; b) the addition of one fault transition for
each observed anomaly.

At the generic observation step q two kinds of anomalies
can be observed: unexpected firings of transitions - a
transition fires after a time less than (greater than) its
lower (upper) bound - and missing firings of transitions -
a transition does not fires at τq even though it has been
enabled for a time equal to its upper bound. Consequently,
the faulty behavior of the system at time τq is characterized
by the couple (T un

q , Tmiss
q ), where the set T un

q collects all
those transitions for which an unexpected firing occurred
at time τq and the set Tmiss

q collects all those transitions
for which a missing firing occurred at time τq.

Notice that T un
q

⋂
Tmiss
q = ∅.

An approach to model repair of TPN models has been
presented by the authors in Basile et al. (2016a), as well.
Now, authors introduce an incremental algorithm that
receives as input the current model of the system and
the observed timed firing sequence, and returns as output
the repaired model identified by means of the two above
mentioned techniques.

In Fig. 1, the repaired model identification algorithm is
shown. It works on the basis of a timed firing sequence
obtained starting from event observation and enriched
by additional information, precisely, time-out occurrences
(the term time-out is used to denote that nothing else is
observed but a transition, enabled for a time equal to the
upper bound of its firing interval, does not fire) and firing
of fault transitions added to the nominal model.

Let denote Sq as the repaired model at step q and Sk the
timed firing sequence obtained terminating S at the step
k. At each step q, the current timed firing sequence Sq is
build in according to the following algorithm:

Algorithm 1: Building/updating of Sq.

Input: Sold, tj (only needed for Sq updating) ;
Output: Sq .
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q , Denote mqs , with s ≥ 2, the marking
reached after the immediate firings of transitions.

Given the firing sequence associated to the set T im
q , it can

be considered made up of the union of nim
q disjoint subsets

of concurrent transition firings. Hence, firing of transitions
in T im

q can be considered occurred in nim
q substeps; each

substep is denoted by qs, with s ∈ [2, nim
q + 1]. Finally, it

holds that T im
q =

⋃nim
q +1

s=2 T im
qs

.

3. PROBLEM FORMULATION AND REPAIR
MODEL ALGORITHM

Two techniques are used to repair the system nominal
model to identify a repaired model able to generate the
observed faulty behavior: a) the extension of the transition
firing intervals; b) the addition of one fault transition for
each observed anomaly.

At the generic observation step q two kinds of anomalies
can be observed: unexpected firings of transitions - a
transition fires after a time less than (greater than) its
lower (upper) bound - and missing firings of transitions -
a transition does not fires at τq even though it has been
enabled for a time equal to its upper bound. Consequently,
the faulty behavior of the system at time τq is characterized
by the couple (T un

q , Tmiss
q ), where the set T un

q collects all
those transitions for which an unexpected firing occurred
at time τq and the set Tmiss

q collects all those transitions
for which a missing firing occurred at time τq.

Notice that T un
q

⋂
Tmiss
q = ∅.

An approach to model repair of TPN models has been
presented by the authors in Basile et al. (2016a), as well.
Now, authors introduce an incremental algorithm that
receives as input the current model of the system and
the observed timed firing sequence, and returns as output
the repaired model identified by means of the two above
mentioned techniques.

In Fig. 1, the repaired model identification algorithm is
shown. It works on the basis of a timed firing sequence
obtained starting from event observation and enriched
by additional information, precisely, time-out occurrences
(the term time-out is used to denote that nothing else is
observed but a transition, enabled for a time equal to the
upper bound of its firing interval, does not fire) and firing
of fault transitions added to the nominal model.

Let denote Sq as the repaired model at step q and Sk the
timed firing sequence obtained terminating S at the step
k. At each step q, the current timed firing sequence Sq is
build in according to the following algorithm:

Algorithm 1: Building/updating of Sq.

Input: Sold, tj (only needed for Sq updating) ;
Output: Sq .
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