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a b s t r a c t 

Stochastic resonance (SR) in a time polo-delayed asymmetry bistable system driven by multiplicative 

white noise and additive color noise is investigated in this paper. First, the effective potential function 

is deduced based on probability density approach theory, small delay approximation theory and colored 

noise approximation theory. Second, the mean first-passage time (MFPT) which plays an important role 

in investigating on particles escape rate is derived and we find that the effect of additive color noise 

is more observable than that of multiplicative white noise on MFPT. Finally, influences of different pa- 

rameters on SR are studied by signal-to-noise ratio (SNR). The analytic expression of SNR is derived and 

three-dimensional graphs of SNR with different parameters are obtained. We conclude that time delay τ
and time delay strength e can suppress SR and that asymmetric item r has a non-monotone effect on SR. 

The results also suggest that adjusting the additive noise intensity Q is more sensitive than that of the 

multiplicative noise intensity D in controlling SNR. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Stochastic resonance (SR) is a significant phenomenon that can 

enhance the output signal-to-noise ratio (SNR) in nonlinear dy- 

namical systems. This phenomenon was originally proposed by 

Benzi and Nicolis in the 1980s for explaining quaternary glaciers 

[1–3] . Since then, SR has extensively been studied and applied in 

various fields [4–11] . McNamara et al. [12,13] observed SR phe- 

nomena via a bidirectional ring laser and studied the expression of 

the SNR using the adiabatic approximation theory. Dykman et al. 

[14] innovatively introduced a neoteric method, which is the lin- 

ear response theory for investigating SR. Bag et al. [15] discussed 

the mean lifetime for the escape of a Brownian particle through 

an unstable limit cycle driven by multiplicative colored Gaussian 

and additive Gaussian white noises. Zhou et al. [16] studied SR 

in an asymmetric bistable system driven by correlated noise, and 

found that the effects of potential asymmetry and the strength of 

the coupling between the noises had opposing effects on the SNR. 

Wang et al. [17,18] introduced a time delay into SR and concluded 

that such delays could produce different effects on SR by chang- 

ing the parameter values. Shi et al. [19–22] studied the character- 

istic of SR and its application in weak signal detection. He et al. 

[23,24] investigated SR in an over-damped fractional oscillator sub- 
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ject to multiplicative dichotomous noise. Lu et al. [25,26] proposed 

a non-stationary weak signal detection strategy based on a time- 

delayed feedback stochastic resonance model, and proved that this 

method was suitable for the detection of signals with strong non- 

linear and non-stationary properties. Guo et al. [27] studied SR 

phenomena in a piecewise nonlinear model driven by a periodic 

signal and correlated noises, and discussed the effects of non- 

Gaussian noise and Gaussian noise on SR. 

Since the beginning of the 21st century, researchers have begun 

to attach importance to the study of time delay in nonlinear dy- 

namical systems. Time delay exists in physics systems, nervous sys- 

tems, and energy systems and so on. Therefore, time delayed sys- 

tems can be regarded as simplified, but very useful, descriptions of 

systems that involve a reaction chain or a transport process. Based 

on the concept of delay Fokker-Planck equations, Frank [28,29] in- 

vestigated nonlinear stochastic systems with time delay and de- 

rived the small delay approximation theory. Du et al. discussed 

the effects of global-time delay and polo-time delay separately in 

bistable systems [30] . Guo et al. discussed SR in a tumor-immune 

system subject to bounded noises and time delay [31] . Han et al. 

studied impact of time delays on stochastic resonance in an eco- 

logical system describing vegetation, [32] . Wang et al. discussed 

impact of delays and rewired on the dynamics of small-world neu- 

ronal networks with two types of coupling [33] . Guo et al. stud- 

ied SR in a time-delayed bistable system and a mono-stable sys- 

tem subject to multiplicative and additive noise [34] . An increasing 
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Fig. 1. The MFPT with fixed H = 0 . 1 , Q = 0 . 3 , r = 0 . 3 , τ1 = 0 . 3 for various D, τ and e : (a) MFP T x s 1 → x s 2 
with fixed e = 0 . 3 and various D and τ ; (b) MFP T x s 2 → x s 1 

with fixed 

τ= 0 . 1 and various D and e . 

Fig. 2. The MFPT with fixed H = 0 . 1 , Q = 0 . 3 , e = 0 . 3 , τ = 0 . 1 , τ1 = 0 . 3 for various D and r. (a) MFP T x s 1 → x s 2 
with various D and r ; (b) MFP T x s 2 → x s 1 

with various D and r . 

number of studies on nonlinear stochastic systems with time de- 

lay have appeared in recent years [35–41] . However, to the best of 

our knowledge, no study has investigated time polo-delayed asym- 

metric bistable systems driven by multiplicative white noise and 

additive color noise. 

This paper studies SR phenomena in a time polo-delayed asym- 

metric bistable system driven by multiplicative white noise and ad- 

ditive color noise. In Section 2 , we deduce the Langevin equation 

and the general potential function of this system. Section 3 de- 

scribes the influence of various parameters on the mean first- 

passage time (MFPT). The effects of the parameters on the SR phe- 

nomena are investigated in Section 4 . Finally, the conclusions are 

stated in Section 5 . 

2. Time polo-delayed asymmetric bistable system 

The traditional Langevin equation is given by 

d x 

d t 
= ax − b x 3 + A cos (ωt) + ξ (t) (1) 

Du L. C. and Mei D. C. investigated a bistable system with global 

delay and two noises [42] . The Langevin equation of the system is 

written as below: 

d x 

d t 
= ax (t − τ ) − bx (t − τ ) 3 + A cos (ωt) + x (t − τ ) ξ (t) + η(t) 

(2) 

Guo Y. F et al studied stochastic resonance in a time-delayed 

asymmetric bistable system with mixed periodic signal [43] . They 

describe the relevant Langevin equation as follow: 

d x 

d t 
= ax (t − τ ) − bx (t − τ ) 3 + f 1 cos ( ω 1 t) 

+ f 2 cos ( ω 2 t) + r + xξ (t) + η(t) (3) 

Through these three equations we can see that both in Eq. (2 ) 

and Eq. (3 ) the x and x 3 of the system contain the time delay τ , 

which we call the system with global delay. In this article we con- 

sider the time delay τ exists only in x but not exists in x 3 , which 

we call a time polo-delayed system. So the Langevin equation of 

a time polo-delayed asymmetric bistable system driven by a pe- 

riodic signal, uncorrelated multiplicative noise ξ ( t ), and additive 

noise η( t ), can be described by the following [44] : 

d x 

d t 
= ax − b x 3 + r + ex (t − τ ) + A cos (ωt) + xξ (t) + η(t) (4) 

where τ is the time delay, e is the time delay strength, r is the 

asymmetric item, and A and ω denote the amplitude and frequency 

of the periodic signal, respectively. ξ ( t ) and η( t ) represent white 

noise and colored noise respectively, and each noise term is char- 

acterized by its respective mean and variance 

〈 ξ (t) 〉 = 〈 η(t) 〉 = 0 

〈 ξ (t) ξ ( t ′ ) 〉 = 2 Dδ(t − t ′ ) 

〈 η(t) η( t ′ ) 〉 = 

Q 

τ1 

exp 

(
−| t − t ′ | 

τ1 

)

〈 ξ ( t ′ ) η( t ′ ) 〉 = 〈 ξ ( t ′ ) η(t) 〉 = 0 (5) 

where D and Q are the intensities of the multiplicative and additive 

noise, respectively, and τ 1 denotes the correlation time of η( t ). 

The nonlinear dynamics described by Eq. (4) correspond to a 

non-Markov stochastic process. Using the probability density ap- 

proach and small delay approximation, we transform the non- 

Markov process into a Markov process. Without the loss of gen- 

erality, we set a = 1, b = 1. Thus, Eq. (4) can be replaced by the fol- 

lowing effective Langevin equation 

d x 

d t 
= (1 + e + eτ + e 2 τ ) x − (1 + eτ ) x 3 + (1 + eτ )(r + A cos (ωt)) 

+ x 〈 ξ (t) 〉 + 〈 η(t) 〉 (6) 

Using the unified colored noise approximation, we obtain the 

time polo-delayed Fokker-Planck equation, written as 
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