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a  b  s  t  r  a  c  t

Optical  instruments  are  widely  used  for precision  surface  measurement.  However,  the dynamic  range
of optical  instruments,  in  terms  of  measurement  area  and  resolution,  is  limited  by  the characteristics  of
the imaging  and the detection  systems.  If  a large  area  with  a high  resolution  is  required,  multiple  mea-
surements  need  to be  conducted  and  the  resulting  datasets  needs  to be stitched  together.  Traditional
stitching  methods  use  six  degrees  of freedom  for the  registration  of the  overlapped  regions,  which  can
result  in  high  computational  complexity.  Moreover,  measurement  error  increases  with  increasing  mea-
surement  data.  In  this  paper,  a stitching  method,  based  on  a Gaussian  process,  image  registration  and
edge  intensity  data  fusion,  is presented.  Firstly,  the stitched  datasets  are  modelled  by  using a Gaussian
process  so  as  to  determine  the  mean  of each  stitched  tile.  Secondly,  the  datasets  are  projected  to a  base
plane.  In this  way,  the  three-dimensional  datasets  are  transformed  to two-dimensional  (2D)  images.  The
images  are  registered  by using  an  (x, y) translation  to simplify  the complexity.  By using a high precision
linear  stage  that  is integral  to the  measurement  instrument,  the rotational  error  becomes  insignificant
and  the  cumulative  rotational  error  can  be eliminated.  The  translational  error  can  be  compensated  by
the  image  registration  process.  The  z  direction  registration  is performed  by a least-squares  error  algo-
rithm  and  the  (x,  y,  z) translational  information  is determined.  Finally,  the  overlapped  regions  of  the
measurement  datasets  are fused  together  by the  edge  intensity  data  fusion  method.  As  a result,  a large
measurement  area  with  a high  resolution  is obtained.  A  simulated  and  an  actual  measurement  with  a
coherence  scanning  interferometer  have been  conducted  to verify  the proposed  method.  The  stitching
result  shows  that the  proposed  method  is  technically  feasible  for large  area  surface  measurement.

©  2017 Elsevier  Inc.  All  rights  reserved.

1. Introduction

In precision metrology, one challenge is the high dynamic range
measurement of precision surfaces, which require both large mea-
surement area and high resolution data [1]. This is especially true
for the measurement of surfaces with multi-scale characteristic
which have large scale topographic and small scale structure. Due
to the limited field of view (FOV) and resolution of the camera, it
is difficult to obtain a result with a satisfactory range in a single
measurement which measures multi-scale information. One of the
possible solutions is to perform multiple measurements and stitch
the results together to form a dataset with a larger area to reveal the
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large topographic information without losing the high resolution
information to characterize the micro-structure pattern [2].

Stitching has been reported for a sub-aperture stitching inter-
ferometer for both spherical and flat surface measurements [3–6].
Preibisch et al. [7] used a phase-correlation method to find the
translation matrix between image pairs and performed global opti-
mal  stitching. Chen et al. [8] proposed a sub-aperture stitching
and localization algorithm for spherical and planar surfaces. More-
over, they developed a coarse-to-fine stitching strategy. Zhang et al.
[9] developed a simultaneous reverse optimizing reconstruction
method which is based on system modelling technique for aspheric
sub-aperture stitching interferometer. Ye et al. [10] used an opti-
mal  stitching planning method to measure large aspheric optical
surface with ±4 mm range of probe and 20% of overlapped region.
Wiegmann et al. [11] evaluated the accuracy of the sub-aperture
stitching method using virtual experiments and found that the
overall accuracy of stitching result outperformed the direct mea-
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Fig. 1. Diagram of the Gaussian process based stitching method.

surement method by a factor of about 3. For surface measurement
instruments such as coherence scanning interferometers, which are
widely used today for precision surface measurement, some com-
mercial products can provide a stitching function for relatively flat
surfaces [12].

However, most of the stitching methods make use of six degrees
of freedom for registration in the overlapped regions and the com-
putational complexity is relatively large. For instance, the Iterative
Closest Point (ICP) algorithm [13] has O(NpNx) complexity for a sin-
gle iteration. For a registration with Ntand Nq initial translations and
rotations, the total complexity is O(NpNxNtNq) which is consider-
ably high. Moreover, the error caused by the stitching algorithm
is accumulated when the number of sub-surface measurements
is increasing, especially for the rotational error, which is difficult
to compensate. Marinello et. al [14] pointed out that the transla-
tional error is biggest source of errors, while the Roll, Pitch and
Yaw error can be as small as several arc-sec. With the help of high
precision linear stages in which the rotational error can be consid-
ered to be minimal or negligible, registration can be simplified to a
three degrees of freedom translation problem with the complexity
reduced to O(NpNxNt).

In this paper, a stitching method based on Gaussian process and
image registration together with an edge intensity data fusion is
developed. The working principle of the method is discussed. A sim-
ulation and an actual measurement were conducted to verify the
method. Some technical aspects are also discussed and the edge
effect is improved as compared with the traditional method. The
results of the experiments show that the proposed method is suit-
able for stitching of measurement results of areal measurement
instruments, which provides a technically feasible solution for high
dynamic range optical measurement for precision surfaces.

2. The principle of the Gaussian process and image
registration based stitching method

The framework of the proposed Gaussian process and image
registration based stitching method is shown in Fig. 1. First, the
sub-aperture measurement datasets are modelled using a Gaus-
sian process [15] so as to obtain the mean surfaces, which can
reduce the registration error caused by measurement noise and
outliers. The datasets are converted to two-dimensional images
and the images are registered using an intensity based algorithm,
which can determine the (x, y) translation parameters. The MAT-
LAB Image Registration Toolbox [16] has been used to implement
this algorithm. In this study, 20 % overlapped area for the measure-
ment datasets is chosen for the best balance between efficiency and
accuracy [17]. After the (x, y) translation is determined, the z axis
translation is calculated by using a least-squares error method so
as to minimize the z distance between the two mean surfaces. The
next step is to calculate the data in the overlapped region with an

edge intensity data fusion method. Finally, the datasets are stitched
together to form a dataset combining all the (x, y, z) translation
information and fused overlapped data.

2.1. Gaussian process modelling of original surfaces

Noise in the measurement processes and outliers in the result
may  affect the registration accuracy. Huang et al. [18] pointed out
that both the standard deviation of the noise and the mean error
of the noise have influence of the registration error. Traditional
methods utilise filtering techniques to remove noise and outliers in
the original measurement results. However, filtering is limited by
distortion and edge effects [19]. The Gaussian process modelling
involved in the proposed stitching method aims to improve the
registration accuracy [20]. The original measurement results can
be described as a discrete function of z(xi, yi), which means the
z-coordinate of the i-th point is a function of the lateral position
(xi, yi). Let vi = (xi, yi), so the measured datasets can be represented
as z(vi), i = 1, 2, . . .,  N, where N is the number of points. The mea-
surement process can be considered as a Gaussian process which
is a stochastic process, with underlying surface and measurement
noise, which can be expressed as

z(vi) = f (vi) + ε (1)

where f(vi) is the underlying surface and ε is the measurement
noise, which is assumed to have a Gaussian distribution ε∼N(0,  �2

ε ),
with zero mean and �2

ε variance.
In order to model the underlying surface, Gaussian process mod-

elling is used in this study. A Gaussian process is a random process
where the probability distribution function to the associated obser-
vation is normal and the joint probability distributions associated
with any finite subset of the observations are also normal. A Gaus-
sian process can be modelled as a mean function and a covariance
function, which can be expressed as:

f (vi) = GP(mz(vi), kz(vi, vj)) (2)

where mz(vi) is the mean function,kz(vi, vj) is the
covariance function with mz(vi) = E[z(vi)] and kz(vi,
vj) = E[(z(vi) − mz(vi))(z(vj) − mz(vj))]. The mean function rep-
resents the expected z value at vi while the covariance function
represents the variance of the z value when vi = vj and the
covariance between the z values when vi /= vj.

In this study, the mean function is designed to be zero function
since the measured surface is unknown. Moreover, a squared expo-
nential function is used to represent the covariance of the Gaussian
process model:

kz(vi, vj) = �2
z exp

(
−‖vi − vj‖2

2l2

)
(3)

where ‖vi − vj‖ is the distance between vi and vj, �2
z is the constant

variance of the Gaussian process model and l is the characteristic
length-scale.

The parameters of the covariance function corresponding to unit
characteristic length-scale and unit signal standard deviation are
first initiated to be zeros and the likelihood parameter was initiated
to be log(0.1), which denotes the standard deviation of the noise to
be 0.1 mm.  The parameters of the Gaussian process was  then opti-
mized by minimizing the negative log marginal likelihood. After
the parameters are optimized, the mean surface and the covariance
surface of the measured data are fully determined. In this study, the
implementation of the Gaussian process modelling is based on the
Gaussian processes for machine learning (GPML) toolbox [21].
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