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a b s t r a c t

The propagation of uncertain input parameters in a linear dynamic analysis is reasonably
well established today, but with the focus of the dynamic analysis shifting towards
nonlinear systems, new approaches is required to compute the uncertain nonlinear re-
sponses.

A combination of stochastic methods (Polynomial Chaos Expansion, PCE) with an
Asymptotic Numerical Method (ANM) for the solution of the nonlinear dynamic systems is
presented to predict the propagation of random input uncertainties and assess their in-
fluence on the nonlinear vibrational behaviour of a system. The proposed method allows
the computation of stochastic resonance frequencies and peak amplitudes based on
multiple input uncertainties, leading to a series of uncertain nonlinear dynamic responses.
One of the main challenges when using the PCE is thereby the Gibbs phenomenon, which
can heavily impact the resulting stochastic nonlinear response by introducing spurious
oscillations. A novel technique to avoid the Gibbs phenomenon is be presented in this
paper, leading to high quality frequency response predictions.

A comparison of the proposed stochastic nonlinear analysis technique to traditional
Monte Carlo simulations, demonstrates comparable accuracy at a significantly reduced
computational cost, thereby validating the proposed approach.

& 2016 Published by Elsevier Ltd.

1. Introduction

Mechanical systems can experience nonlinear dynamic behaviour such as cubic stiffness, contact, friction, or impact,
which can have a significant influence on the dynamic response of the system. In this case a conventional linear analysis
becomes insufficient to describe the behaviour of the physical system and a nonlinear dynamic analysis is required. A large
research effort has focused on the prediction of such nonlinear responses, where most techniques are based on numerical
integration over time [1], providing accurate but computationally expensive results.

A more efficient technique to obtain the nonlinear dynamic response is the combination of the Harmonic Balance
method (HBM) with a continuation predictor–corrector method [2] allowing the computation in the frequency domain. To
further improve the computational efficiency of the approach, the iterations of the correction steps can be replaced by the
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Asymptotic Numerical Method (ANM) [3,4]. This method is based on a high order predictor to avoid the expensive cor-
rection step. The major restriction of the ANM is that the nonlinearities must be expressed in a quadratic form, somewhat
restraining its wide applicability, especially for complex industrial problems where the non-linearities cannot be accurately
represented by a polynomial quadratic form. However, several kinds of nonlinearities have been successfully processed with
the ANM [5–7] leading to a significant reduction in the computational time.

With the emergence of reliable and accurate prediction techniques for the nonlinear response, the influence of un-
certainties on the vibration behaviour has become of major interest to allow accurate predictions over a wide range of initial
conditions. Uncertainty quantification (UQ) has been used to predict the effects of possible uncertainties, originating from
manufacturing processes or operational conditions of a real structure, and to derive models that can take them into account.
Traditional Monte Carlo simulations (MCS) [8] are often used for this purpose. They provide accurate results, but have very
slow convergence rates, which limits their use for nonlinear dynamic analysis somewhat. To overcome some of the issues
with the MCS, other stochastic methods have been suggested, including the Polynomial Chaos Expansion (PCE), introduced
by Wiener [9] who represented a stochastic process using a series of Hermite polynomials with Gaussian random variables.
The PCE has been successfully applied to model uncertainties in linear finite elements applications [10], where the uncertain
Gaussian input parameters were expressed via the Karhunen–Lòeve Expansion and the system response was determined
using the PCE.This technique has been generalised to non-Gaussian random variables [11,12] using orthogonal polynomial
basis adapted to any probability distribution function. In further generalisations, the PCE has been extended to rational
function series [13], partitioned random space [14] and sparse chaos expansions [15], adding additional features and en-
abling its use for the presented nonlinear dynamic analysis with uncertainties.

The PCE has been used, in combination with the HBM, to analyse the dynamic linear response of a rotor with Gaussian
uncertainties [16], saving significant computational time when compared to MCS without the loss of accuracy. For this linear
case the frequency was considered to be independent of the uncertain variables which is unsuitable for a nonlinear dynamic
response analysis. The latter can be characterised by returning points (and so multi-solutions) which makes the frequency
non-deterministic. To overcome this issue, Didier and Sinou [17] used an intrusive PCE in combination with the HBM and a
predictor–corrector method, leading to an accurate stochastic response of a nonlinear system. This approach has been
successfully applied to complex mechanical problems [18], but unfortunately the intrusive nature requires a rewrite of the
equations of the problem which in turn necessitates modifications to the deterministic numerical solver for each new
computation. The intrusive approach also requires the definition of a stochastic phase condition which differs for each type
of nonlinearity and which is usually quite difficult to find.

A large number of PCE coefficients are often required to achieve convergence of the first and second statistical moments
(mean and standard deviation) to the MCS solution [19], reducing somewhat the computational advantages of PCE. To
improve the efficiency of the PCE, a combination with Aitken’s method has been proposed in [20] leading to an improve-
ment of the convergence rate.

A further problem arising from the use of PCE is the presence of spurious oscillations in the stochastic response in the
case of strong discontinuities. This so called Gibbs phenomenon can strongly affect the results and introduce large differ-
ences to the reference solution (eg. MCS) [17,21]. This is of particular relevance for nonlinear dynamic problems, where the
presence of returning points in the response can lead to significant oscillations, making an accurate and reliable prediction
quite challenging.

In this paper an efficient approach to compute the stochastic nonlinear dynamic response of a system will be presented,
combining the PCE with the HBM and the ANM to allow an accurate and fast computation. The introduced method can be
applied as an intrusive or a non-intrusive approach, the latter giving it a much wider applicability for industrial application
since it eliminates the need for modifications to existing deterministic solvers. The proposed technique also avoids the Gibbs
oscillations, enabling an accurate and fast computation of the stochastic nonlinear dynamic response, which is further
improved by the use of the Smolyak quadrature [22] for multivariate random spaces. The resulting frequency response
functions are validated against Monte Carlo Simulations (MCS).

2. Deterministic nonlinear problem

The chosen approach to solve the deterministic nonlinear problem is a combination of the Harmonic Balance method
(HBM, [4]) with the Asymptotic Numerical Method (ANM) that allows a fast and accurate solution of the nonlinear equa-
tions. The ANM is based on a Taylor expansion of the solution [3] and its combination with HBM was first introduced by
Moussi [5]. A short introduction to the HBMþANM approach will be provided for completeness, but for a detailed dis-
cussion the reader may consult above references.

ANM is a continuation method based on the expression of the solution in a Taylor series. The initial solution (first point)
is calculated using a traditional iterative process (e.g. Newton’s method) after which the solution path is followed by ap-
proximating the solution with a Taylor series. When enough terms are being used in the Taylor series, the error on the
computed solution is very small, eliminating the need for the time consuming correction step of traditional path following
techniques.

One of the formulations of a nonlinear dynamic system characterised by D DOFs is:
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