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Abstract

This paper investigates a dynamic model of a cable — mass system equipped with an auxiliary mass element to act as a transverse
tuned mass damper (TMD). The cable length varies slowly while the system is mounted in a vertical host structure swaying at
low frequencies. This results in base excitation acting upon the cable - mass system. The model takes into account the fact that
the longitudinal elastic stretching of the cable is coupled with their transverse motions. The TMD is applied to reduce the
dynamic response of the system. The parameters of TMD are selected by the application of a linearized model and a single-mode
approximation. In this approach the excitation is represented as a narrow-band Gaussian process mean-square equivalent to a
harmonic process. The deterministic model and stochastic model are used to predict and control the resonance response of the
system.
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1. Introduction

Moving cable systems are deployed in many engineering systems. In some applications the length of cables vary
during operation rendering the system non-stationary. For example, in hoist, elevator and mine lifting installations
the payload- carrying cables moving at speed within a host structure have time-variant length and the natural
frequencies vary with their length [1]. The modular cable - mass installations are mounted within host structures that
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are often subject to environmental phenomena such as wind and seismic excitations [2]. The corresponding response
and excitation mechanisms can be represented by deterministic functions or treated as stochastic processes [3,4]. In
this paper a deterministic model and the corresponding stochastic model of a mass —cable system constrained to
move vertically in a host structure are considered. The system is equipped with an auxiliary spring — damper - mass
combination attached to the main (primary) mass to act as a tuned mass damper (TMD). In this arrangement the
TMD can be applied to mitigate the effects of resonance when the frequency of the base motion becomes near the
natural frequency corresponding to the primary mass — cable mode.

2. Mathematical model
2.1. System Configuration

Fig. 1 shows a mass — vertical cable system mounted within a host structure with a primary mass M attached to the
lower end of the cable of time-varying length L = L(t) moving axially at transport speed V. The cable is mounted
within a host structure of height AB = Z, with its upper end passing thrpough O at the top of the structure. The mean
quasi-static tension, mass per unit length, modulus of elasticity and cross-sectional metallic area of the cable are
denoted as 77 = [M +my +m(L—x)]( g-a), m, E and 4, respectively. The Eulerian spatial coordinate x is measured
from the upper end downwards as shown. The lateral dynamic displacements of the cable are denoted as v(x,?). They
are coupled with the longitudinal vibrations denoted as u(x,?). The mass M is constrained in the lateral direction by a
linear spring of coefficient of stiffness £ and can move in the vertical direction. Its lateral and longitudinal vibrations
are denoted as vy (2) and uy(?), respectively. An auxilliary small mass m, is attached to the main mass via a spring —
dashpot system of coefficient of stiffness &, and coefficient of viscous damping ¢, respectively. The auxilliary mass
is constrained to mover horizontally with its motion denoted as z,. The equations of motion Eq. (1) are developed by
applying the extended Hamilton’s principle.
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where & =u, +v> /2 represents the axial strain, D()/Dt=() +V( ), ()i and (), represent partial derivatives
with respect to time ¢ and x, respectively, and 7 =(M +m, +mL)(g—a), where a represents the acceleration of the
transport motion. For tensioned members such as metallic cables the lateral frequencies are much lower than the
longitudinal frequencies. Thus, considering that the excitations frequencies are much lower than the fundamental
longitudinal frequencies the longitudinal inertia of the cable can be neglected in the first equation in (1). Thus, this
equation can be integrated to give u, = e(t) - vﬁ / 2 where e(t) represents the quasi-static axial strain in the cable.

2.2. Base Excitation

The host structure is subjected to bending deformations acting as base excitation and described by the polynomial
shape function ¥ (r)=37%-25" (see Fig. 1), where 7 =z/Z, with z denoting a coordinate measured from ground
level and Z,, representing the height at the top end of the cable. In this scenario the structure undergoes harmonic
motions v, (t) of frequency (2, and amplitude A, measured at the level Z, . Thus, at the upper end the
displacements of the cable are v(0,#) =v,(¢). In order to accommodate the base excitation in the equations of
motion (1) the overall lateral displacements of the cable — mass system are expressed by Eq. (2).
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