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are often subject to environmental phenomena such as wind and seismic excitations [2]. The corresponding response 
and excitation mechanisms can be represented by deterministic functions or treated as stochastic processes [3,4]. In 
this paper a deterministic model and the corresponding stochastic model of a mass –cable system constrained to 
move vertically in a host structure are considered. The system is equipped with an auxiliary spring – damper - mass 
combination attached to the main (primary) mass to act as a tuned mass damper (TMD). In this arrangement the 
TMD can be applied to mitigate the effects of resonance when the frequency of the base motion becomes near the 
natural frequency corresponding to the primary mass – cable mode. 

2. Mathematical model 

2.1. System Configuration 

Fig. 1 shows a mass – vertical cable system mounted within a host structure with a primary mass M attached to the 
lower end of the cable of time-varying length  L L t  moving axially at transport speed V. The cable is mounted 
within a host structure of height AB = Z0 with its upper end passing thrpough O at the top of the structure. The mean 
quasi-static tension, mass per unit length, modulus of elasticity and cross-sectional metallic area of the cable are 
denoted as    i

dT M m m L x g a       , m, E and A, respectively. The Eulerian spatial coordinate x is measured 
from the upper end downwards as shown. The lateral dynamic displacements of the cable are denoted as v(x,t). They 
are coupled with the longitudinal vibrations denoted as u(x,t). The mass M is constrained in the lateral direction by a 
linear spring of coefficient of stiffness k and can move in the vertical direction. Its lateral and longitudinal vibrations 
are denoted as vM(t) and uM(t), respectively. An auxilliary small mass md is attached to the main mass via a spring – 
dashpot system of coefficient of stiffness kd and coefficient of viscous damping cd, respectively. The auxilliary mass 
is constrained to mover horizontally with its motion denoted as zd. The equations of motion Eq. (1) are developed by 
applying the extended Hamilton’s principle. 
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  (1) 

where 2
x xu v 2    represents the axial strain,      t xD Dt V  ( )t and ( )x represent partial derivatives 

with respect to time t and x, respectively, and   dT M m mL g a    , where a represents the acceleration of the 
transport motion. For tensioned members such as metallic cables the lateral frequencies are much lower than the 
longitudinal frequencies. Thus, considering that the excitations frequencies are much lower than the fundamental 
longitudinal frequencies the longitudinal inertia of the cable can be neglected in the first equation in (1). Thus, this 
equation can be integrated to give   2

x xu e t v 2   where e(t) represents the quasi-static axial strain in the cable. 

2.2. Base Excitation 

The host structure is subjected to bending deformations acting as base excitation and described by the polynomial 
shape function   2 33 2      (see Fig. 1), where 0z Z   with z denoting a coordinate measured from ground 
level and 0Z  representing the height at the top end of the cable. In this scenario the structure undergoes harmonic 
motions  0v t  of frequency 0  and amplitude A0, measured at the level 0Z . Thus, at the upper end the 
displacements of the cable are 0(0, ) ( )v t v t . In order to accommodate the base excitation in the equations of 
motion (1) the overall lateral displacements of the cable – mass system are expressed by Eq. (2).  

  0
0

0

1( , ) ( , ) 1 ,   L
L

Z Lv x t v x t x v t
L Z

  
        

   
  (2) 
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It is assumed that the variation of length L with time is small. Thus, L is a slowly varying function in time meaning 
that the change of L(t) over a period corresponding to the fundamental frequency of the system is small compared to 
L [3]. In order to represent this fact a slow time scale defined as єt  , where where є 1  is a small parameter, is 
introduced. This parameter is quantified as  0 0є V L  where 0  denotes the lowest natural frequency and L0 is 
the corresponding length of the cable [5]. Considering that  L L   the relative lateral displacements are then 
expressed using the finite series given by Eq. (3). 

Fig. 1. Model of the mass – cable system under consideration: (a) undeformed configuration, (b) deformed configuration. 
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where  ;n x L     are orthogonal trial functions depending on the spatial coordinate and are varying slowly with 
the length of the cable. The trial functions satisfy the homogenous boundary conditions and are defined as 

    ; sin , 1, 2, ,n nx L L x n N           , with N denoting the number of terms/ modes taken in (3). The 
slowly varying eigenvalues  n   are defined by the frequency equation given as 
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The generalised coordinates  nq t  are time-dependent and fast varying. Using (2), (3) together with (4) in the 
equations of motion, orthogonalising with respect to the trial functions, when terms O(є) and O(є2) are neglected, 
equations Eq. (5) and Eq. (6) result.  
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