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a b s t r a c t 

This paper presents a study to predict the probabilistic characteristics of lateral dynamic motions of a long heavy 

cable moving at speed within a tall host structure. The cable is subjected to a base-motion (kinematic) excitation 

due to a low frequency sway of the structure. The development of the deterministic equations of motion and of 

the stochastic models describing the lateral dynamic behaviour of the cable is presented. Due to the time-varying 

length of the cable, the system exhibits nonstationary dynamic characteristics and its response is governed by 

nonstationary ordinary differential equations. Two stochastic models of motion of the structure are considered. 

In the first model, the excitation is represented as a narrow-band Gaussian process mean-square equivalent to a 

harmonic process. The second model involves a non-Gaussian process in the form of a random train of pulses, 

idealizing the action of strong wind gusts. The differential equations to determine the mean values and the second- 

order joint statistical moments of the response are formulated and solved numerically. A parametric study is 

conducted to demonstrate the influence of speed of the cable on the deterministic and stochastic characteristics 

of the response. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

Environmental phenomena such as strong wind conditions and 

earthquakes cause tall civil structures such as towers and high-rise build- 

ings to vibrate (sway) at low frequencies and large amplitudes [1,2] . 

When the structure is sufficiently flexible, the dynamic response to 

forces generated by these phenomena is significant. As a result, the 

corresponding kinematic excitation often excites long slender continua 

such as cables and ropes that are part of equipment hosted within the 

structure. For example, large resonance motions of suspension ropes and 

compensating cables in high-speed elevators in high-rise buildings take 

place [3] . In order to predict the dynamic behaviour of moving continua 

in such systems, various models have been used. The excitation mech- 

anism can be represented by deterministic functions and consequently 

the response of the system is treated as a deterministic phenomenon 

[4–8] . However, the nature of loading caused by environmental phe- 

nomena such as wind is usually nondeterministic [9,10] . The excitation 

should then be described by a stochastic process so that the methods of 
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stochastic dynamics can be employed to predict the dynamic behaviour 

of the system. 

In this work, the model and stochastic methodology proposed 

by Kaczmarczyk et al. [11] is extended and used to carry out a 

comprehensive computer simulation study to predict the dynamic re- 

sponse of a long cable moving at speed within a tall slender host struc- 

ture. First, a derivation of the deterministic model which describes the 

dynamic behaviour of the system is summarized and the dynamic char- 

acteristics of the system are explained. Two, stochastic models of motion 

of the structure are considered. In the first model, the excitation is repre- 

sented as a narrow-band Gaussian process mean-square equivalent to a 

harmonic process. Alternatively, the dynamic loading due to wind gusts 

may be adequately idealized by a train of randomly occurring pulses 

[12–14] with the corresponding the dynamic response of a structure be- 

ing also a train of pulses. Hence, in the second model, the excitation 

is treated as a non-Gaussian process in the form of a random train of 

pulses. For both models, the non-stationary differential equations gov- 

erning the statistical moments of the state vector are presented. The 
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Fig. 1. Vertical cable moving within a tall structure. 

equations are then solved numerically and a numerical study based on 

a range of model parameters of the system is conducted. 

2. Equations of motion 

The model depicted in Fig. 1 is used to study the dynamic behaviour 

of a vertical cable of time-varying length L(t) . The cable which has mass 

per unit length m is wrapped around a drum at the bottom end and 

attached at B to a support moving at speed v within a tall cantilevered 

host structure. The host structure sways which results in motion w 0 ( t ) of 

amplitude A 0 at the level defined by the coordinate z 0 measured from 

the structure base level. The deformations of the structure are described 

as A 0 Ψ( z ) where Ψ( z ) represents the deformation shape function with z 

denoting a coordinate measured from the base level. The base motion 

w 0 ( t ) excites the cable and its dynamic response is represented by the 

lateral displacements denoted as w(x,t) , where x is measured from the 

origin O placed at distance l below the base level. 

The equations of motion of the system presented in what follows are 

based on the model discussed in [11] , with a more accurate represen- 

tation of the deformations of the structure used. The mean quasi-static 

tension of the cable is expressed as 

𝑇 𝑚 ( 𝑥, 𝑡 ) = 𝑇 0 + 𝑚𝑥 [ 𝑔 + 𝑎 ( 𝑡 ) ] (1) 

where the spatial coordinate x is defined in a time-variant domain 0 < 

x < L ( t ), T 0 represents a constant tension term, 𝑎 ( 𝑡 ) = �̇� ( 𝑡 ) is the acceler- 

ation of the upper support (an overdot denotes the time derivative) and 

g is the acceleration of gravity. 

The equation governing the linear undamped dynamic response of 

the cable in terms of the lateral displacements w(x,t) is given as 

𝑚 

d 2 𝑤 

d 𝑡 2 
− 

[
𝑇 0 + 𝑚 ( 𝑔 + 𝑎 ) 𝑥 

]
𝑤 𝑥𝑥 − 𝑚 ( 𝑔 + 𝑎 ) 𝑤 𝑥 = 0 (2) 

where () x denotes partial derivatives with respect to x and 

d 2 𝑤 

d 𝑡 2 
= 𝑤 𝑡𝑡 + 2 𝑣 𝑤 𝑥𝑡 + 𝑣 2 𝑤 𝑥𝑥 + 𝑎 𝑤 𝑥 (3) 

where () t denotes partial derivatives with respect to time. 

The displacements at the boundaries x = 0, L ( t ) are defined as 

𝑤 ( 0 , 𝑡 ) = 0 , w [ L ( 𝑡 ) , t ] = w L ( 𝑡 ) (4) 

where w L ( t ) represents lateral displacements of the structure corre- 

sponding to the upper end of the cable (see Fig. 1 ). The continuous 

system described by Eqs. (2) –(4) is discretized using the following ap- 

proximation of the solution: 

𝑤 ( 𝑥, 𝑡 ) = �̄� ( 𝑥, 𝑡 ) + 𝑊 0 ( 𝑥, 𝑡 ) , 0 ≤ 𝑥 ≤ 𝐿 ( 𝑡 ) (5) 

where 

�̄� ( 𝑥, 𝑡 ) = 

𝑁 ∑
𝑛 =1 

Φ𝑛 [ 𝑥 ; 𝐿 ( 𝑡 ) ] 𝑞 𝑛 ( 𝑡 ) , 0 ≤ 𝑥 ≤ 𝐿 ( 𝑡 ) (6) 

is an approximate solution that satisfies homogenous boundary condi- 

tions with Φn [ x; L ( t )] representing the n th eigenfunction of a taut string 

of instantaneous length L = L(t) with a constant tension. The eigenfunc- 

tions are given as 

Φ𝑛 [ 𝑥 ; 𝐿 ( 𝑡 ) ] = sin 𝑛𝜋
𝐿 ( 𝑡 ) 

𝑥, 𝑛 = 1 , 2 , … , 𝑁 (7) 

and q n ( t ) represents the n th modal coordinate. W 0 ( x,t ) is a particular 

solution that satisfies the non-homogenous boundary conditions (4) . 

Noting that the lateral displacements at x = L ( t ) can be expressed as 

w L ( t ) = ΨL [ L ( t )] w 0 ( t ), where ΨL = Ψ[ L ( t ) − l ], the particular solution is 

given as 

𝑊 0 ( 𝑥, 𝑡 ) = Y [ 𝑥 ; 𝐿 ( 𝑡 ) ] 𝑤 0 ( 𝑡 ) , 0 ≤ 𝑥 ≤ 𝐿 ( 𝑡 ) (8) 

where Y[ 𝑥 ; 𝐿 ( 𝑡 ) ] = Ψ𝐿 [ 𝐿 ( 𝑡 ) ] 𝑥 

𝐿 ( 𝑡 ) . In this model, the deformation shape 

function Ψ( z ) is assumed to be related to the fundamental mode of the 

structure and is approximated by a cubic polynomial as follows: 

Ψ( 𝑧 ) = 3 
( 

𝑧 

𝑧 0 

) 2 
− 2 

( 

𝑧 

𝑧 0 

) 3 
(9) 

so that the deformation shape at z = L ( t ) − l is expressed as 

Ψ𝐿 [ 𝐿 ( 𝑡 ) ] = 3 
( 

𝐿 ( 𝑡 ) − 𝑙 

𝑧 0 

) 2 
− 2 

( 

𝐿 ( 𝑡 ) − 𝑙 

𝑧 0 

) 3 
(10) 

respectively. It can be assumed that the length L is a slowly varying pa- 

rameter, i.e. that its variation is observed on a slow time scale defined as 

𝜏 = 𝜀 t , where 𝜀 ≪ 1 is a small quantity [15] . Thus, L = L ( 𝜏) and the rate 

of change of L with respect to time t is proportional to 𝜀 

𝑑𝐿 

𝑑𝑡 
≡ �̇� = 

𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝑑𝜏

𝑑𝑡 
= 𝜀 

𝑑𝐿 ( 𝜏) 
𝑑𝜏

; �̈� = 𝜀 2 
𝑑 2 𝐿 ( 𝜏) 
𝑑 𝜏2 

(11) 

Consequently, noting that 𝑣 ≡ �̇� , 𝑎 = �̈� the velocity and accelera- 

tion can also be considered as being slowly varying. Using Eq. (11) the 

expressions for partial derivatives with respect to time t of the expres- 

sion (5) are given as 

𝑤 𝑡 = 

𝑁 ∑
𝑛 =1 

{ 

𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑞 𝑛 ( 𝑡 ) + Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] ̇𝑞 𝑛 ( 𝑡 ) 
} 

+ 𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕Y [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑤 0 ( 𝑡 ) + Y [ 𝑥 ; 𝐿 ( 𝜏) ] �̇� 0 ( 𝑡 ) ; (12a) 

𝑤 𝑡𝑡 = 

𝑁 ∑
𝑛 =1 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝜀 2 
[ (

𝑑𝐿 ( 𝜏) 
𝑑𝜏

)2 
𝜕 2 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 

𝜕 𝐿 2 
+ 

𝑑 2 𝐿 ( 𝜏) 
𝑑 𝜏2 

𝜕 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

] 
𝑞 𝑛 ( 𝑡 ) 

+ 2 𝜀 𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕 Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

�̇� 𝑛 + Φ𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] ̈𝑞 𝑛 

⎫ ⎪ ⎬ ⎪ ⎭ 

+ 𝜀 2 

{ ( 

𝑑𝐿 ( 𝜏) 
𝑑𝜏

) 2 
𝜕 2 Y [ 𝑥 ; 𝐿 ( 𝜏) ] 

𝜕 𝐿 

2 + 

𝑑 2 𝐿 ( 𝜏) 
𝑑 𝜏2 

𝜕Y [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

} 

𝑤 0 ( 𝑡 ) 

+ 2 𝜀 𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕Y [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

�̇� 0 ( 𝑡 ) + Y [ 𝑥 ; 𝐿 ( 𝜏) ] ̈𝑤 0 ( 𝑡 ) ; (12b) 

�̄� 𝑥𝑡 = 

𝑁 ∑
𝑛 =1 

{ 

𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕 Φ′
𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑞 𝑛 ( 𝑡 ) + Φ′
𝑛 [ 𝑥 ; 𝐿 ( 𝜏) ] ̇𝑞 𝑛 ( 𝑡 ) 

} 

+ 𝜀 
𝑑𝐿 ( 𝜏) 
𝑑𝜏

𝜕Y 

′[ 𝑥 ; 𝐿 ( 𝜏) ] 
𝜕𝐿 

𝑤 0 ( 𝑡 ) + Y 

′[ 𝑥 ; 𝐿 ( 𝜏) ] �̇� 0 ( 𝑡 ) , (12c) 

where the primes denote partial derivatives with respect to x . By using 

(6) –( 12 ) in (5) , substituting the result in (2) , multiplying by Φr [ x; L ( 𝜏)], 
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