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a b s t r a c t 

In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Net- 

works (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured 

in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any 

kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution 

that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description 

of different model choices that we’ve found to be necessary for obtaining competitive performance. We 

explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs 

specifically adapted to image data. 

We present a novel CNN architecture which differs from those traditionally used in computer vision. Our 

CNN exploits both local features as well as more global contextual features simultaneously. Also, different 

from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation 

of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure 

that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade 

architecture in which the output of a basic CNN is treated as an additional source of information for a 

subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves 

over the currently published state-of-the-art while being over 30 times faster. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the United States alone, it is estimated that 23,0 0 0 new cases 

of brain cancer will be diagnosed in 2015. 1 While gliomas are the 

most common brain tumors, they can be less aggressive (i.e. low 

grade) in a patient with a life expectancy of several years, or more 

aggressive (i.e. high grade) in a patient with a life expectancy of at 

most 2 years. 

Although surgery is the most common treatment for brain tu- 

mors, radiation and chemotherapy may be used to slow the growth 

of tumors that cannot be physically removed. Magnetic resonance 

imaging (MRI) provides detailed images of the brain, and is one 

of the most common tests used to diagnose brain tumors. All the 

more, brain tumor segmentation from MR images can have great 
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impact for improved diagnostics, growth rate prediction and treat- 

ment planning. 

While some tumors such as meningiomas can be easily seg- 

mented, others like gliomas and glioblastomas are much more dif- 

ficult to localize. These tumors (together with their surrounding 

edema) are often diffused, poorly contrasted, and extend tentacle- 

like structures that make them difficult to segment. Another fun- 

damental difficulty with segmenting brain tumors is that they can 

appear anywhere in the brain, in almost any shape and size. Fur- 

thermore, unlike images derived from X-ray computed tomography 

(CT) scans, the scale of voxel values in MR images is not standard- 

ized. Depending on the type of MR machine used (1.5, 3 or 7 tesla) 

and the acquisition protocol (field of view value, voxel resolution, 

gradient strength, b0 value, etc.), the same tumorous cells may end 

up having drastically different gray-scale values when pictured in 

different hospitals. 

Healthy brains are typically made of 3 types of tissues: the 

white matter, the gray matter, and the cerebrospinal fluid. The 

goal of brain tumor segmentation is to detect the location and 
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extension of the tumor regions, namely active tumorous tissue 

(vascularized or not), necrotic tissue, and edema (swelling near the 

tumor). This is done by identifying abnormal areas when compared 

to normal tissue. Since glioblastomas are infiltrative tumors, their 

borders are often fuzzy and hard to distinguish from healthy tis- 

sues. As a solution, more than one MRI modality is often employed, 

e.g. T1 (spin-lattice relaxation), T1-contrasted (T1C), T2 (spin-spin 

relaxation), proton density (PD) contrast imaging, diffusion MRI 

(dMRI), and fluid attenuation inversion recovery (FLAIR) pulse se- 

quences. The contrast between these modalities gives almost a 

unique signature to each tissue type. 

Most automatic brain tumor segmentation methods use hand- 

designed features ( Farahani et al., 2014; Menze et al., 2014 ). These 

methods implement a classical machine learning pipeline accord- 

ing to which features are first extracted and then given to a clas- 

sifier whose training procedure does not affect the nature of those 

features. An alternative approach for designing task-adapted fea- 

ture representations is to learn a hierarchy of increasingly complex 

features directly from in-domain data. Deep neural networks have 

been shown to excel at learning such feature hierarchies ( Bengio 

et al., 2013 ). In this work, we apply this approach to learn feature 

hierarchies adapted specifically to the task of brain tumor segmen- 

tation that combine information across MRI modalities. 

Specifically, we investigate several choices for training CNNs, 

which are DNNs adapted to image data. We report their advan- 

tages, disadvantages and performance using well established met- 

rics. Although CNNs first appeared over two decades ago ( LeCun 

et al., 1998 ), they have recently become a mainstay of the com- 

puter vision community due to their record-shattering perfor- 

mance in the ImageNet Large-Scale Visual Recognition Challenge 

( Krizhevsky et al., 2012 ). While CNNs have also been successfully 

applied to segmentation problems ( Alvarez et al., 2012; Long et al., 

2015; Hariharan et al., 2014; Ciresan et al., 2012 ), most of the pre- 

vious work has focused on non-medical tasks and many involve 

architectures that are not well suited to medical imagery or brain 

tumor segmentation in particular. Our preliminary work on us- 

ing convolutional neural networks for brain tumor segmentation 

together with two other methods using CNNs was presented in 

BRATS‘14 workshop. However, those results were incomplete and 

required more investigation (More on this in Section 2 ). 

In this paper, we propose a number of specific CNN architec- 

tures for tackling brain tumor segmentation. Our architectures ex- 

ploit the most recent advances in CNN design and training tech- 

niques, such as Max-out ( Goodfellow et al., 2013b ) hidden units 

and Dropout ( Srivastava et al., 2014 ) regularization. We also inves- 

tigate several architectures which take into account both the local 

shape of tumors as well as their context. 

One problem with many machine learning methods is that 

they perform pixel classification without taking into account the 

local dependencies of labels (i.e. segmentation labels are condi- 

tionally independent given the input image). To account for this, 

one can employ structured output methods such as conditional 

random fields (CRFs), for which inference can be computation- 

ally expensive. Alternatively, one can model label dependencies 

by considering the pixel-wise probability estimates of an initial 

CNN as additional input to certain layers of a second DNN, form- 

ing a cascaded architecture. Since convolutions are efficient opera- 

tions, this approach can be significantly faster than implementing 

a CRF. 

We focus our experimental analysis on the fully-annotated MIC- 

CAI brain tumor segmentation (BRATS) challenge 2013 data-set 

( Farahani et al., 2014 ) using the well defined training and testing 

splits, thereby allowing us to compare directly and quantitatively 

to a wide variety of other methods. 

Our contributions in this work are four fold: 

1. We propose a fully automatic method with results currently 

ranked second on the BRATS 2013 scoreboard; 

2. To segment a brain, our method takes between 25 s and 3 min, 

which is one order of magnitude faster than most state-of-the- 

art methods. 

3. Our CNN implements a novel two-pathway architecture that 

learns about the local details of the brain as well as the 

larger context. We also propose a two-phase training procedure 

which we have found is critical to deal with imbalanced la- 

bel distributions. Details of these contributions are described in 

Sections 3.1.1 and 3.2 . 

4. We employ a novel cascaded architecture as an efficient and 

conceptually clean alternative to popular structured output 

methods. Details on those models are presented in Section 3.1.2 . 

2. Related work 

As noted by Menze et al. (2014) , the number of publications 

devoted to automated brain tumor segmentation has grown ex- 

ponentially in the last several decades. This observation not only 

underlines the need for automatic brain tumor segmentation tools, 

but also shows that research in that area is still a work in progress. 

Brain tumor segmentation methods (especially those devoted 

to MRI) can be roughly divided in two categories: those based 

on generative models and those based on discriminative models 

( Menze et al., 2014; Bauer et al., 2013; Angelini et al., 2007 ). 

Generative models rely heavily on domain-specific prior knowl- 

edge about the appearance of both healthy and tumorous tissues. 

Tissue appearance is challenging to characterize, and existing gen- 

erative models usually identify a tumor as being a shape or a sig- 

nal which deviates from a normal (or average) brain ( Clark et al., 

1998 ). Typically, these methods rely on anatomical models ob- 

tained after aligning the 3D MR image on an atlas or a template 

computed from several healthy brains ( Doyle et al., 2013 ). A typi- 

cal generative model of MR brain images can be found in Prastawa 

et al. (2004) . Given the ICBM brain atlas, the method aligns the 

brain to the atlas and computes posterior probabilities of healthy 

tissues (white matter, gray matter and cerebrospinal fluid). Tumor- 

ous regions are then found by localizing voxels whose posterior 

probability is below a certain threshold. A post-processing step 

is then applied to ensure good spatial regularity. Prastawa et al. 

(2003) , also register brain images onto an atlas in order to get a 

probability map for abnormalities. An active contour is then ini- 

tialized on this map and iterated until the change in posterior 

probability is below a certain threshold. Many other active-contour 

methods along the same lines have been proposed ( Khotanlou 

et al., 2009 ; Cobzas et al., 2007 ; Popuri et al., 2012 ), all of which 

depend on left-right brain symmetry features and/or alignment- 

based features. Note that since aligning a brain with a large tumor 

onto a template can be challenging, some methods perform reg- 

istration and tumor segmentation at the same time ( Kwon et al., 

2014; Parisot et al., 2012 ). 

Other approaches for brain tumor segmentation employ dis- 

criminative models. Unlike generative modeling approaches, these 

approaches exploit little prior knowledge on the brain’s anatomy 

and instead rely mostly on the extraction of [a large number of] 

low level image features, directly modeling the relationship be- 

tween these features and the label of a given voxel. These fea- 

tures may be raw input pixels values ( Havaei et al., 2014; Hamamci 

et al., 2012 ), local histograms ( Kleesiek et al., 2014; R.Meier et al., 

2014 ) texture features such as Gabor filterbanks ( Subbanna et al., 

2013; 2014 ), or alignment-based features such as inter-image gra- 

dient, region shape difference, and symmetry analysis ( N.Tustison 

and Avants, 2013 ). Classical discriminative learning techniques such 

as SVMs ( Bauer et al., 2011; Schmidt et al., 2005; Lee et al., 2005 ) 

and decision forests ( Zikic et al., 2012 ) have also been used. Results 
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