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A B S T R A C T

This paper presents a novel framework methodology based on the probability density evolution method (PDEM)
for solving the probabilistic load flow (PLF) problem. By leveraging a constructed visual stochastic process, the
joint probability density evolution equation of a system statement and random inputs is derived based on the
principle of preservation of probability. The probability density function of the system statement can then be
numerically solved by means of a TVD-based difference scheme. The proposed method is validated through case
studies in which the active power and reactive power consumptions of buses are assumed to obey a normal
distribution and Weibull distribution, respectively. The cumulative probability functions of the voltage magni-
tudes of buses and active power branches are computed using the PDEM with 100 samples. The mean, standard
deviation, skewness, and kurtosis are also examined. The comparison to Monte Carlo of 10,000 simulations
demonstrates the accuracy and efficiency of the proposed approach and verifies its suitability to solve the PLF
problem.

1. Introduction

Load flow calculation is a fundamental issue for state estimation and
system planning in the electric power industry. In addition to random
input loads, the integration of wind energy and photovoltaic power has
introduced uncertainty into electric network systems. Therefore, prob-
abilistic load flow (PLF) analysis must be utilized to handle variation in
state variables, such as bus voltages and line flows. Historically, load
flow analysis considering randomness was first proposed by Borkowska
[1] in 1974. Many mathematical methods handling uncertainty have
since been introduced to the PLF problem, including fuzzy theory [2,3],
set theory[4], interval methods [5], and probability theory. Ad-
ditionally, unscented transformation [6], Gaussian mixture models [7],
and univariate dimension reduction methods [8] have also been
adopted to perform PLF analysis.

Among these methods, probability theory-based methods are the
most popular. Initially, the convolution technique [9] dominated PLF
analysis by linearizing load flow equations. Thereafter, owing to the
essential limitations of linearization and rapid development of com-
putational capacity, the convolution technique was replaced by other
methods that are capable of handling nonlinearity in load flow equa-
tions. Among these methods, Monte Carlo simulation [10,11] is parti-
cularly notable for its generality. Because the Monte Carlo method

requires a large number of simulations to ensure accuracy, it is often
utilized to verify the accuracy of other methods instead of being used
directly in engineering practice. To reduce the time cost of Monte Carlo
simulation with simple or direct sampling, various modified sampling
strategies (e.g., importance sampling, stratified sampling, and quasi-
Monte Carlo methods [11–13]) have been proposed. Additionally, other
approximate methods have also been developed to balance calculation
efficiency and accuracy. Combinations of cumulants and Gram-Charlier
expansions [14] or Cornish-Fisher expansions [15] have been employed
to calculate the PLF. Furthermore, a series of point estimation methods
[16–18] have also been utilized to analyze PLF. Recently, considering
the essential randomness of photovoltaic systems and using an index of
photovoltaic penetrations, Ruiz-Rodriguez et al. [19] investigated the
impact of the size of a single-phase photovoltaic system on voltage
unbalance in a secondary radial distribution network using a point es-
timation method. Hernández et al. [20] assessed the impact of un-
certainty in electric vehicles and photovoltaic generation on radial
distribution systems. They proposed a general analytical technique
based on the Cornish-Fisher expansion and a finite mixture distribution
to handle the non-stationarity of loads. It is noteworthy that in the
absence of a probabilistic distribution of random input variables, the
point estimation method is a more attractive option.

In recent years, based on the principle of preservation of
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probability, the probability density evolution method (PDEM) was been
developed by Li and Chen [21,22]. Initially, it was adopted to predict
structural responses in the presence of random excitations [23] or un-
certain parameters [24]. Thus far, the PDEM has been successfully
applied to seismic response and reliability analysis [25], static random
buckling analysis [26], dynamic buckling analysis incorporating
structural imperfections [27], fatigue reliability evaluation [28], and
several other fields [29]. This paper proposes a novel methodology
based on the PDEM to compute PLF.

The remainder of this paper is organized as follows. The problem
statement and formulas for PLF based on the PDEM and a numerical
scheme are introduced in Section 2. Next, case studies with different
coefficients of variation for normal inputs and Weibull inputs are pre-
sented to validate the proposed method in Section 3. Finally, various
conclusions are drawn in Section 4.

2. Problem statement

2.1. Formulation

This section presents a general framework for the PLF problem
based on PDEM theory. Based on the formal solution for load flow
analysis from probability density evolution theory, the joint probability
density evolution equations of a system statement and random inputs
are derived. Power flow analysis is performed to determine the steady
operating state of a power system. Load demands and power generation
are typically given, and the voltages (magnitudes and angles) of buses
and the active and inactive power through lines can be obtained by
solving the governing equations of the power system. The nonlinear
load flow equations [13,30] for a power system can be expressed as:

=
=

g
h

y x
z x

( )
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where x denotes the state vector of nodal voltages and angles, y re-
presents the vector of real and reactive power injections, z is the vector
of real and reactive line flows, and g (·) and h (·) are nonlinear power
injection functions and line flow functions, respectively.

When load demand is uncertain, both the input and output of the
power system need to be treated as random variables. Let Y be the state
variable of interest. Then, its formal solution can be written as:

=Y G X(Θ) ( ,Θ) (2)

where X denotes the set of determine input parameters (e.g., system
admittance), Θ is the set of random parameters (e.g., active or inactive
injections of buses), and G is a transformation from considered factors
to the statement variables of interest based on Eq. (1), which typically
needs to be solved using numerical methods [31].

Because load flow calculation is essentially modeled as a steady-
state problem, in order to employ the time-dependent PDEM to perform
PLF analysis, a virtual stochastic process [25] must first be constructed
as follows:

= =τ Y τ G τXΦ(Θ, ) (Θ)· ( ,Θ)· (3)

Here, a virtual time τ is introduced to form a stochastic process
τΦ(Θ, ). One can see that the random variable of interest can be ob-

tained using = =Y τ(Θ) Φ(Θ, 1). Additionally, the deviation of Φ with
respect to τ can be obtained as follows:
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∂
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For time-dependent loads, there is no need to construct the virtual
stochastic process. One can directly solve the transient governing
equations to obtain the probability density function (PDF) of interest by
using the PDEM.

With the help of the stochastic process τΦ(Θ, ), the PDF p y( )Y of Y
can be determined by using the PDEM. First, the joint probability

density evolution equation p ϕ θ τ( , , )ΦΘ of τΦ(Θ, ) and random parameters
Θ are derived based on the principle of preservation of probability.
Consequently, the PDF of Y can be obtained by integrating the joint
PDF p ϕ θ τ( , , )ΦΘ at =τ 1 over the defined domain of the random para-
meters Θ. In other words, one can obtain the PDF of Y by using the
following relationship:

∫= =p y p ϕ θ τ dθ( ) ( , , 1)Y Θ ΦΘ (5)

The strategy for the derivation of the joint PDF p ϕ θ τ( , , )ΦΘ is for-
mally similar to the conservation equations in computational fluid dy-
namics. In this study, the statement variable of a power system is
modelled as a virtual stochastic process, where its actual statement
corresponds to a particular instant with the virtual time being equal to
1. Because there are neither additional new random factors nor dis-
appearing random factors in the virtual evolution process under con-
sideration, τ{Φ(Θ, ),Θ} defined at ×{Ω Ω }Φ Θ is a preserved stochastic
system, where ΩΦ is the defined domain of the virtual stochastic process
and ΩΘ is the defined domain of the random parameters under con-
sideration.

Now, let Ω be an arbitrary subdomain in ×{Ω Ω }Φ Θ , where ∂Ω is the
boundary of Ω. We inspect the change in probability in Ω and the
probability flowing into Ω through ∂Ω during the virtual time interval
dτ . First, the probability increment through ∂Ω during dτ is denoted:

− p ϕdτ dS dθn( ̇ )·ΦΘ Φ (6)

where ϕ ̇ is the deviation of ϕ with respect to τ . Let ∂ΩΦ be the boundary
of ΩΦ, where SΦ denotes the area element of ∂ΩΦ, n is the norm vector
of ∂ΩΦ, and dθ denotes the volume element of ΩΘ. Additionally, the
minus symbol indicates that the probability flows into Ω.

Next, the joint PDF p ϕ θ τ( , , )ΦΘ at +τ dτ can be expressed by first
order expansion as:
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Therefore, the incremental probability in Ω during dτ is:
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Because no new random factors are considered, according to the
principle of preservation of probability [19,29], the incremental prob-
ability in Ω must be equal to the probability flowing into Ω through ∂Ω:
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By using the Gaussian integration theorem, the right side of Eq. (9)
can be converted into an integration over ×{Ω Ω }Φ Θ and we have:
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By substituting Eq. (10) into Eq. (9) and noting that Y (Θ) is in-
dependent over ϕ, one obtains:
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Considering the arbitrary nature of Ω, the joint probability density
evolution equation p ϕ θ τ( , , )ΦΘ is derived as:
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The corresponding initial condition can be written as:

==p ϕ θ τ δ ϕ p θ( , , )| ( ) ( )τΦΘ 0 Θ (13)

where δ ϕ( ) is Dirac’s delta function. The initial condition implies that
the probability distribution of random parameters was determined at
the initial state.
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