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a b s t r a c t

In this paper, the risk assessment of a PV integrated power system is accomplished by computing the
over-limit probabilities and the severities of events such as under-voltage, over-voltage, over-load, and
thermal over-load. These aspects are computed by performing temperature-augmented probabilistic
load flow (TPLF) using Monte Carlo simulation. For TPLF, the historical data for PV generation, ambient
temperature, and load power, each collected at twelve specific time instants of a day for the past five
years are pre-processed by using three linear regression models for accurate uncertainty modeling. For
PV generation data, the developed model is capable of filtering out the annual predictable periodic
variation (owing to positioning of the Sun) and decreasing production trend due to ageing effect
whereas, for ambient temperature and load power, the corresponding models accurately remove the
annual cyclic variations in the data and their growth. The simulations pertaining to the aforesaid risk
assessment are performed on a PV integrated New England 39-bus test system. The system over-limit
risk indices are calculated for different PV penetrations and input correlations. In addition, the
changes in the values of TPLF model parameters on the statistics of the result variables are analyzed. The
risk indices so obtained help in executing necessary steps to reduce system risks for reliable operation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, power systems are more often operating under
highly unpredictable conditions due to the integration of various
renewable energy sources (RESs). Among the RESs, PV generation is
greatly favored because of its ability to generate power at varying
capacities. This results in uncertainty that sets a higher require-
ment on system security during planning and operation. Further,
geographically nearby PV generations are correlated feed-in. The
increase in uncertainty effect due to high PV penetrations and their
associated correlations cause system variables to violate the limit
and make the system vulnerable. Hence, risk assessment by
computing risk indices based on over-limit probability and severity
to recognize systemweakness more realistically is entailed [1]- [2].
The calculation of risk indices are accomplished with the help of
probabilistic load flow (PLF) with respect to input uncertainties and
correlations. The accuracy of the computed risk indices depends on

the accuracy of the PLF results. The following are the three major
requirements to achieve accurate PLF results.

i) Application of an accurate uncertainty handling method,
ii) Establishment of an accurate power system model, and
iii) Accurate modeling of input uncertainties.

The various methods used for PLF are categorized as, numerical
methods, analytical methods, approximate methods, and hybrid
methods [3]. Monte Carlo simulation (MCS), a typical numerical
method is considered as a reference for accuracy comparison of
other PLF methods [3e22]. MCS provides numerical estimation of
result variables based on random statistical sampling and solves
the PLF problem by a series of deterministic routines.

The establishment of an accurate power system model is highly
essential in PLF. A majority of the PLF studies except for [6] assume
transmission branch resistance as constant. But, branch resistance
depends on branch temperature which in turn is a function of a set
of factors that are probabilistic in nature; among which ambient
temperature is dominant. In order not to overlook the temperature
related errors, temperature-augmented load flow (TLF) captures
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electro-thermal coupling effect of transmission branches [23]. The
first proposal on sensitivity matrix-based temperature-augmented
PLF (TPLF) model is cited in Ref. [22] and the usefulness of proba-
bility distributions of TPLF result variables for various power sys-
tem studies is detailed in Table 1.

In case of TPLF, ambient temperatures of the temperature
dependent branches (TDBs) are included in the input vector in
addition to the bus power injections. This increases the total
number of input random variables (RVs), all of which may not be
modeled by any specific parametric distributions. Hence, it is an
uphill task to accurately model the probability distributions and to
include the associated correlations. Assumption of some para-
metric probability distributions to quantify the input uncertainties
may not always be suitable in all cases. On the other hand, a more
realistic probabilistic modeling, incorporating past experiences can
be achieved from the historical data. The authors in Refs. [4] [13],
[22] [24], have performed uncertainty modeling of input RVs at a
particular instant of time. The uncertainty modeling of peak load
power (at 7 p.m.) [4], maximum PV generation (at noon) [13] [22],
[24], and ambient temperature (at noon) [22] is performed for PLF.
In order to remove the trend from load samples, a fitting curve
using a set of standard functions is used [4]. In Ref. [13], the periodic
effect due to annual positioning of the Sun is removed from PV
generation samples by filtering out the daily, seasonal, and annual
periodic components whereas; in Ref. [24] the removal of predi-
cable lowest frequency annual periodic component is accomplished
with the help of a linear clear sky model. In Ref. [22], ambient
temperature data is probabilistically modeled by filtering out the
lowest frequency periodic component of one cycle/year. The un-
dertone of removing the trend and the periodic effect from the
historical data essentially is not to attribute their variations to a
movement in uncertainty.

Although the authors in Ref. [22] successfully have augmented
temperature effect in PLF analysis, the influence of variation of TPLF
model parameters on the statistics of result variables is overlooked.
At a specific time of the day PV generation depends on the
geographical and environmental conditions of that location. At
different time instants, the production patterns are different and
the clear sky model for eliminating the periodic effect as proposed
in Ref. [24] may not be suitable as it accounts for only the Sun's
height which alone is not adequate. Hence, an accurate clear sky
model taking into account the other important factors such as the
Sun's direction and the angle of incidence of solar radiation de-
serves research attention. Similarly, multi-time instant uncertainty
modeling of ambient temperature and load power needs to be
equally regarded for TPLF. Further, the analysis of the impact of
various PV penetrations and different input correlations on TPLF
results is imperative in making the over-limit risk assessment more
realistic. With this motivation, investigations are performed on the
following objectives.

i) An accurate uncertainty modeling of PV generation, ambient
temperature and load power at multiple time instants.

ii) An analysis of the effect of various PV penetrations and the
variations of TPLF model parameters on the statistics of the
result variables.

iii) Over-limit risk assessment considering various PV penetra-
tions and input correlations.

In Section 2, the application of MCS for TPLF is systematically
detailed. The input uncertainties are probabilistically modeled and
correlation effects are discussed in Section 3. In Section 4, various
types of over-limit risk indices are elaborated. In Section 5, modi-
fied New England 39-bus power system is used to analyze the effect
of PV penetration and the value of model parameters on statistics of
result variables. In addition, the system over-limit risk indices are
computed for various PV penetrations and input correlations.
Finally, the concluding remarks are given in Section 6.

2. PLF in temperature-augmented power system model

The power system model as developed for TLF is the basis for
TPLF using MCS. TLF assumes that the power system is both in
electrical and thermal steady state. It is a general conception that
electrical dynamics is neglected in load flow. Again, the thermal
dynamics of the branch conductors is assumed short as compared
to the changes in conductor loading over time. TLF model can be
developed either by considering branch resistance [25] or branch
temperature [23] as state variable. The consideration of the latter
simplifies the mathematics required for modeling and is compu-
tationally more efficient. The transmission branches having non-
zero series resistance are referred to as TDBs. The variation in
branch reactance due to temperature variation is assumed negli-
gible as in Ref. [23]. The modeling steps of TLF are explained as
under.

The resistance of a transmission branch i� j (branch connecting

ith bus and jth bus) is expressed as,

Ri�j ¼ RRef ; i�j

 
Ti�j þ TF; i�j

TRef ; i�j þ TF; i�j

!
(1)

where Ti�j is the conductor temperature of the branch i� j, TF is the
temperature constant, RRef ; i�j and TRef ; i�j are the reference values
of Ri�j and Ti�j respectively. According to thermal resistance model,
Ti�j is expressed as,

Ti�j ¼ TAmb; i�j þ TRise; i�j ¼ TAmb; i�j þ Rq; i�jPLoss; i�j (2)

where, TAmb and TRise are the ambient temperature and branch
temperature rise above TAmb respectively and Rq is the thermal
resistance. By using (2) let us define,

T 0i�j ¼ Ti�j � Rq; i�jPLoss; i�j ¼ TAmb; i�j (3)

Since the real and reactive bus power injections (P and Q
respectively) are specified, the mismatch equations DP and DQ

Table 1
Usefulness of probability distributions of the TPLF result variables.

Result variable Adequacy indices

Bus voltage magnitude Steady state under and over voltage probabilities can be obtained.
Branch temperature Probability of branch temperature above the allowable maximum limit i.e., thermal over-load probability can be ensured.
Generator bus reactive power Capability of the system to maintain bus voltage magnitudes at desired level can be evaluated.
Branch power flow Steady state overload probabilities of the transmission branches can be identified to take decisions regarding reinforcement plans and

operations.
Slack bus power Probability of slack bus power exceeding the limit can be known.
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