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a b s t r a c t

With the growing development of intermittent renewable energy sources, such as wind and solar, trans-
mission planners are faced with uncertainly varying generations and resultant probabilistic power flow. A
bi-level programming model is proposed to coordinate the process of decision making and reliability
assessment. Based on the concept of life cycle cost (LCC), its minimization can be defined as the objective
function of a transmission planner. This upper level problem needs to be solved jointly with the lower
probabilistic optimal power flow problem of minimizing the load shedding in the system. Hence the
bi-level problem is transformed into a Mathematical Programming with Equilibrium Constraints
(MPEC) with Karush-Kuhn-Tucker conditions. Due to the nonlinearity nature of MPEC, disjunctive
inequalities and Generalized Benders Decomposition methods are used to solve this problem. Results
of both Garver’s 6-bus test system and a realistic 63-bus system are used to illustrate the rationality
and validity of the proposed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a tremendous interest and development in the
area of harnessing energy from intermittent renewable energy
sources (IRES). IRES generally include wind energy resource, solar
energy resource, biomass, and other types of resources. Yet, these
kinds of resources created significant challenges to both operation
and planning of a power system. For example, the output from
wind farms (WF) or photovoltaic stations (PVS) are not susceptible
to control and dispatch resulting in additional uncertainty to the
system operator. By the same token, the generation outputs from
future WF and PVS are difficult to forecast, hence adding complex-
ity to the system planner in managing various uncertainties.

However, system planners still have to plan for adequacy and
reliability of future power system, despite these uncertainties.
Thus, these uncertainties must be taken into consideration when
planning for a future reliable system. Generally, system planning
involves planning for both generation and transmission [1]. In
competitive electricity markets, transmission expansion planning

(TEP) is relatively independent from generation expansion. Gener-
ation expansion is driven by market forces, while TEP is managed
by independent system operators [2]. Hence, our present work will
focus on TEP only.

Many research works have been done on this important topic of
transmission planning. Various objectives are formulated in TEP
process as follows: (1) minimization of static investment or the
length of expanded lines [3]; (2) minimization of investment and
load curtailment multiplied by sufficiently large penalty factors
[4]; (3) minimization of investment and one or more operation
costs, including generator cost [5], energy deficit cost [6], loss cost
[7] and congestion cost in deregulated market [8]; (4) minimiza-
tion of maximum regret with risk analysis [9]; (5) maximization
of investment and delivery of marginal rate in a fuzzy form [10].
Some of the objectives mentioned above are not purely defined
from the nature of network. Most researchers transformed the
operation and reliability indexes of TEP into value-based objectives
to be included in the objective function. Nevertheless, the eco-
nomic evaluation of a TEP decision is not only a problem of static
investment, but also the direct and indirect outlays produced at
the various stages of planning, operation, maintenance, retirement
and scrap. To deal with that TEP problem, the application of life
cycle cost (LCC) theory brought a novel methodology to the trans-
mission planning and future asset management. In [11], an eco-
nomic evaluation method for the design of HVDC based on LCC
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was proposed. Economic evaluations of proposed transmission
projects were done without considering life cycle cost [12]. Only
a few applications of this technical and economic management
can be found in TEP.

Mathematically, even with the dc power flow model, it is gen-
erally difficult to find the optimal solutions for the TEP problem,
which is a mixed-integer nonlinear programming (MINLP) prob-
lem, due to its nonconvex nature [3]. The optimization methods
to solve TEP model are classified as heuristic approach and mathe-
matical approach. Heuristic approach mainly includes particle
swarm optimization [6], tabu search [7], genetic algorithm [13],
and many other meta-heuristic algorithms. It is convenient to
search the solution sets without modifying the original models
with heuristic methods. However, the performance depends
mainly on the control parameters and the solutions might be
locally optimal. Researchers usually converted MINLP models into
mixed-integer linear programming (MILP) models [3], and solved it
with branch & bound [10], cutting plane [14] or decomposition
methods [15]. Many commercial solvers can be applied to solve
MILP models directly. The shortcoming of these methods is that
plenty of binary variables are introduced to MILP model. Reduction
of variables still remains an obstacle in improving the computa-
tional efficiency.

The methods to tackle the uncertainties of TEP can be classified
into three groups: scenario-based method, analytical method, and
interval method. The research in [16] simulated thousands of
deterministic operational scenarios with Monte Carlo simulation
(MCS). The results of MCS are generally accurate but there still
exists significant computational burden. Hence scenario reduction
technique was used in [17]. Ref. [18] assumed several typical sce-
narios to represent the uncertain operational conditions and a sce-
nario tree is assumed in [19]. The accuracy of these methods
depends mainly on the subjectively chosen scenarios. A chance-

constrained programming method which incorporates the proba-
bility distribution into the analytical probabilistic dc power flow
calculation is proposed in [20]. The calculation of this method is
complex with a large amount of convoluted computations. Interval
method was used in [21], but the distribution of stochastic param-
eters cannot be easily obtained.

Our paper provides a bi-level probabilistic timing TEP model for
bulk transmission system which is integrated with large amount of
IRES while coordinating process of decision making and reliability
assessment. The main contributions of this paper include four
aspects: (1) a bi-level timing TEP model considering probabilistic
optimal power flow (POPF) which is formulated with the objective
of evaluating the LCC of a TEP decision; (2) three point estimate
method (3PEM) [22] is first applied in the TEP method to account
for the uncertainties including random generation output from
IRES, transmission outages and load fluctuations; (3) the bi-level
model is reformulated as a mathematical programming with equi-
librium constraints (MPEC) which models the lower level problem
as constraints to the upper level by using Karush-Kuhn-Tucker
(KKT) optimality conditions, so that the bi-level problem can be
solved in a joint manner; (4) an alternative linearization method
for the proposed nonlinear MPEC is derived to reduce the binary
variables in the equivalent linear form and improve the computa-
tional efficiency of Generalized Benders Decomposition (GBD).

The remainder of this paper is organized as follows. Section 2
provides the problem description and formulation of proposed
bi-level probabilistic timing TEP, the equivalent MPEC and its
equivalent linear form. Section 3 provides the results of an
illustrated example in detail to examine the performance of the
proposed methodology. Section 4 provides the results of a realistic
case study to illustrate the practicability of the method in
the application to the bulk power system. Section 5 draws
conclusions.

Nomenclature

NB electricity nodes indexed by i; j; li (start of corridor l) and
lj (terminal of corridor l)

ND demand nodes indexed by d
NG generation nodes indexed by g
NL transmission corridors indexed by l
NP uncertain scenarios indexed by s
TS expansion planning time periods indexed by t
Nþ set of positive integers
nl integer decision variables for expanded lines
nsum
l line amount of corridor l

h voltage angles at electricity nodes

PG
g conventional power plant output (MW)

PS
g photovoltaic station output (MW)

PW
g wind farm output (MW)

Rd load shedding at demand nodes (MW)
Ploss expected network power loss (MW)
cLCC life cycle cost of expansion plan ($)
cI investment of expanded lines ($)
cO expected network operation cost ($)
cM maintenance cost of transmission network ($)
cF expected network failure cost ($)
cD discard cost of expanded lines ($)
cFd expected direct failure cost ($)
EEENS annual expected energy not supplied (MW h)
ELSE annual expected power of load shedding (MW)
Pl power flow of corridor l (MW)

Ls Lagrange function of the lower level model
b binary variables in linearized upper model
z product of h and b
q binary variables in linearized KKT conditions
SL service life of expanded lines (year)
rD basic discount rate
rR residual rate
cI l unit investment of lines in corridor l ($/km)
Ll length of lines in corridor l (km)
cprice average electricity price ($/MWh)
TO annual operation hours of network (h)
dl annual failure rate of lines in corridor l (/km)
cMl unit maintenance cost of lines in corridor l ($)
f ratio of indirect failure cost to the direct one
cDu unit disposal cost of discarding line ($/km)
xl reactance of transmission lines (X)
Dd demand at demand nodes (MW)
n0
l amount of existing transmission lines

nmax
l maximum line amount of corridor l

Pmax
l transfer capability of transmission lines (MW)

PG;min
g minimum output of conventional plants (MW)

PG;max
g maximum output of conventional plants (MW)

PS;max
g maximum output of photovoltaic plants (MW)

PW;max
g maximum output of wind farms (MW)

ps weighted factor of scenario s
K sufficiently large positive constant.
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