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H I G H L I G H T S

• A gap in current understanding of rural health center energy demand is identified.

• A building energy model (BEM) is parameterized for rural African health centers.

• The BEM is coupled with electrical demand data and validated using a case study.

• A method for creating synthetic demand forecasts using measured data is proposed.

• Energy demand prediction via the above can enable health center energy system design.
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A B S T R A C T

Rapid deployment of health service infrastructure is underway to meet the growing needs of populations in sub-
Saharan Africa, however the energy infrastructure needed to support high quality services has tended to lag.
Understanding the electrical and thermal energy needs of health centers constructed with local building methods
and materials and operating outside of the jurisdiction of heating, ventilation and air conditioning (HVAC) codes
is complicated by a lack of appropriately scaled and configured energy system design frameworks and validation
data for dynamic simulations. In this work we address this gap by linking the thermal envelope performance of
health center buildings under heating and cooling loads with measured indoor air temperature, meteorological
conditions, and operational electricity demand. A resistance-capacitive type energy balance model is para-
meterized using typical health center architectural data for sub-Saharan Africa (floor plans from Uganda and
Lesotho) and heat transfer characteristics; to achieve this energy flows between HVAC equipment, internal loads,
and ambient conditions are simulated on an hourly time step with indoor temperature thresholds representative
of thermostat settings. A typical meteorological year dataset for Lesotho is used as a case study, validated with
indoor temperature measurements and power metering at four health center sites spanning a daily patient load
ranging from 15 to 450 per day over rural and urban communities. High resolution electricity measurements
from smart meters installed at the clinics are used to close the energy balance and form the basis of a prob-
abilistic method for forecasting long term hourly electricity demand in African health centers. These data and the
corresponding method have relevance to energy system design for health clinics across sub-Saharan Africa,
especially those featuring intermittent renewable generation. The integration of these two modeling approaches
constitutes a novel tool for sizing and costing energy infrastructure to meet operational demand at health centers
in both urban and rural areas of developing countries.

1. Introduction: Powering health infrastructure

In sub-Saharan Africa energy for health centers is increasingly
prioritized by planners pursuing a general strategy of increased energy
access for the approximately 600 million people who lack electricity

services [1–3] This stems from the expectation that electrification
contributes to positively impacting health outcomes through improved
service delivery, i.e., use of modern equipment and procedures, elec-
tronic medical records (EMR), etc. Meanwhile market forces have
contributed to lowering the cost of energy equipment, e.g., solar panels,
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therein expanding the budgetary ability to provide electricity at remote
clinics. While new health centers being built in unelectrified areas may
include such energy systems in the design, including updated archi-
tecture for energy efficiency, the far more extensive portfolio of existing
facilities operating without power could also benefit from retrofitting
and upgrading. The sizing, configuration, and costing of these retrofit
energy systems depend critically on understanding the dynamics of
energy demand in a representative setting, something which to date has
simply been impossible due to a dearth of relevant data to underpin the
evaluation of energy (electricity or heating cooling) demands at these
facilities.

1.1. Health center demand dynamics

The energy demand, and time-dependence of demand, correlate
with a number of factors such as size of the facility (footprint and pa-
tient load), building construction and thermal performance, types of
equipment and services deployed, and the meteorological conditions
driving heating ventilation and air-conditioning (HVAC) loads - as well
as the extent to which the latter are sourced from electricity or (as is
more common for heating applications) fuels such as LPG, coal, or
biomass. A health clinic energy generation system design tool, such as
those developed by [4,5] or the authors previously in [6,7], must
therefore perform a simulation of energy system yield over time,
matching generation capacity (as a function of resource, e.g., solar,
availability) to a (calculated, inferred, assumed, or measured) demand
dataset. To do so most accurately requires knowledge of diurnal,
weekly, and seasonal variation in demand, data which are typically
unavailable. The synthetic construction of a demand dataset is most
often pursued using inventory based assessment methods, such as [8],
that generally fail to capture actual observed usage patterns [6]. This
work proposes an alternative, measurement-based approach to gen-
eration of the demand datasets required to drive the annual supply/
demand simulations necessary to optimize sizing of energy infra-
structure.

1.2. Measurement-based demand forecasting: Background, standard
methods, and energy access applications

The development of accurate load forecasts is a challenge as old as
industrial scale electricity production, however in recent decades - as
computation has become cheaper - research efforts have broadened to
include high resolution data-driven and methodological innovations.
The literature contains numerous highly complete reviews of load
forecasting research across scales and applications (e.g., [9]), so many
so that the most recent [10] in fact proposes specific criteria for eval-
uating novelty of contributions within this dense landscape. Included in
this list are new (1) problems, (2) methodologies, (3) techniques, (4)
datasets, and (5) findings, though the authors are careful to highlight
that significance must be judged relative to industry or commercially-
relevant challenges [10]. The follow paragraphs outline state-of-the art
from these perspectives in order to situate the current manuscript
within the field.

Forecasting has been most frequently applied for large scale grid
applications on short time frames (hour, day, and week ahead) and
specifically in developed economies, scenarios where aggregation pro-
vides some level of smoothing and economic motivators for forecasting
accuracy are large (hundreds of thousands of dollars [11]). Allocation
and sizing of generation capacity (for base, peak, and intermediate
loads) was historically approached through the use of load duration
curves (LDCs) derived from daily peak demand data on an electric grid
[12], with capacity investments determined through medium term
(months to years) estimation of the evolution of LDC shapes. Accurate,
long-term high resolution forecasting of load profiles corresponding to
the hourly-annual (8760) simulation format found in widely used ty-
pical meteorological year datasets [13] and in models for building en-
ergy performance [14] and renewable generation applications [15] is
today usually of interest for any application with highly constrained
economics or poorly constrained demand/generation characteristics.
Small islanded power systems (the focus of this work) fall squarely into
both of these categories, particularly renewable energy systems which
on one hand suffer significant economic penalties when forced to run
backup generators and on the other face high capital costs related to
battery storage and high variability and uncertainty in demand char-
acteristics (e.g., as tackled for wind systems by Dutta et al. [16]). For
such applications, where dynamics of both demand and generation are
sub-hourly, LDCs prove inadequate for engineering design and there-
fore high-resolution demand data and simulations are needed.

Analysis of smart meter data has provided significant insight into
some industry specific load behaviors [17,18], but development of
probabilistic load prediction models for electricity applications (needed
especially for cases where historical data are lacking) has lagged sig-
nificantly relative to other fields [19]. Several novel, more general-
izable approaches have been evaluated for creating probabilistic de-
mand models, ranging from probabilistic behavior modeling [20,21] to
representative load curves [22] to Bayesian approaches [23], based on
numerous different techniques (hidden Markov models [17,20], time-
varying splines [24], ARMA models [23,25], and machine learning al-
gorithms [22,23]) and generating some successes and cross-cutting
lessons (e.g., temperature dependence of demand curves [20,26]).
Transferability of methods to new applications is, however, in many
cases limited by (1) a necessity for large volumes of application-specific
ground-truth data (e.g., for behavior modeling), (2) loss of information
in statistical representation (e.g., representative load curves), (3) loss of
information in time structure (e.g., time-invariant Bayesian ap-
proaches), or (4) computational constraints. Identification of the ap-
propriate method for a particular application therefore requires navi-
gating trade-offs that are dependent on the ease (and cost) of data
collection, volatility of actual demand, strength of demand auto-cov-
ariance, etc.

In particular, research related to load forecasting for small rural
energy systems (micro- or mini-grids) in developing nations has lagged
due to a paucity of recorded demand data (some exceptions include
[21,27]). This remains true in spite of increasing interest in the po-
tential for achieving significant energy access in, e.g., Africa and India
via renewable energy based minigrids, as well as the recognition that
essential services in the health sector critically depend on access to both
electricity and thermal energy for indoor climate control [2,4].

To help bridge this gap, this manuscript presents a long time-frame
(years) probabilistic electricity load forecasting tool for use in opti-
mized design and sizing of islanded energy systems for off-grid health
care facilities, a challenge which to date has primarily been (with very
limited success) using inventory methods for demand prediction [4].
The tool is calibrated with a novel multi-year dataset collected from
sub-Saharan health clinics (electricity demand, indoor and outdoor
temperature, solar insolation) for the specific purpose of load fore-
casting. Probabilistic demand forecasting is accomplished using a
Bayesian approach (the underlying probability distribution function is
estimated using collected high-re solution data) wherein auto-

Nomenclature

α absorbance
A area
Ib beam irradiance
k thermal conductivity
Q̇ heat flow
τ time
U overall heat transfer coefficient
V̇ velocity
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