Energy 141 (2017) 316-332

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems

J.C. Hernández ^a, F.J. Ruiz-Rodriguez ^b, F. Jurado ^{c, *}

^a Department of Electrical Engineering, University of Jaén, 23071, EPS Jaén, Spain

^b Department of Electrical and Thermal Engineering, University of Huelva, 21004, Spain

^c Department of Electrical Engineering, University of Jaén, 23700, EPS Linares, Jaén, Spain

ARTICLE INFO

Article history: Received 23 November 2016 Received in revised form 28 July 2017 Accepted 7 September 2017 Available online 12 September 2017

Keywords: Distribution system Electric vehicle charging station Photovoltaic power system Probabilistic load flow Probability density distribution Uncertainty

ABSTRACT

Photovoltaics (PVs) provide new opportunities for radial distribution systems (RDSs) that feed electric vehicle charging stations (EVCSs). However, the accurate assessment of the combined technical impact is problematic because of the uncertainties of sources/loads. In previous research, we developed a technique to assess the impact of PV generation. This new study presents a general analytical technique (GAT) that evaluates the combined impact for an extended time frame. Specifically, the GAT effectively assesses the fulfilment of technical requirements for weekly RDS operating variables as specified in regulations. As our main objective is to improve the assessment accuracy of the EV and PV interaction in RDSs, the weekly assessment was extended to a one-year time period, during which it is possible to capture the total uncertainty. Also, correlation of input variables is handled.

The computational cost of the GAT is lower than that associated with Monte-Carlo simulation, which is used to confirm the GAT accuracy. Although the results focus on an RDS located in Spain, GAT is applicable to any RDS and is scalable to different penetration levels. The numerical results show the impact of different correlated and non-correlated case studies on the voltage profile, apparent power flow in lines, and real loss.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The development of electric vehicles (EVs) is currently driven by the need to decrease reliance on foreign oil supplies and CO₂ emissions [1,2]. However, their large-scale use involves the massive integration of EVCSs in traditional RDSs. This integration involves numerous technical challenges [3,4]. One of the most important challenges concerns the heterogeneous sources that generate the power for EVCSs. CO₂ emissions can be reduced by the inclusion of renewable power in these RDSs [1,2,4] (e.g. PV power). Although renewable power in RDSs with EVCSs makes the generating system more sustainable [3,4], the assessment of this interaction is problematic because of the inherent uncertainties associated with the sources/loads involved. Precisely for this reason, this issue has not

* Corresponding author.

as yet been successfully addressed. Moreover, the uncertainty parameters may have a considerable level of correlation. Many probabilistic studies have analysed the potentially nega-

tive technical impacts of EVCSs on RDSs such as the following: (i) transformer and cable thermal loading [5–10]; (ii) stability and node voltage profile [5,8,11–17]; (iii) power line losses [5,10,15]; (iv) system power demand [9,14–21]; (v) system reliability and costs [22–24]; (vi) harmonics and unbalance [10]. Similar probabilistic work analysed how PV units produced various adverse technical impacts on RDSs [20,25–28].

Until now, the negative technical impacts of EVCSs or PV units have been minimized by demanding interconnection requirements (EVCS [4] and PV [29]), which are based on probabilistic assessments for worst-case scenarios, i.e. peak load or any other representative snapshot (e.g. PV units [30–32]). These probabilistic assessments limited to one or only a few snapshots provide the statistical characterization (PDF and CDF) for each snapshot or time interval; however, they do not reflect the aggregated statistical behaviour over a longer time period [33].

Autors or the at

E-mail addresses: jcasa@ujaen.es (J.C. Hernández), francisco.ruiz@die.uhu.es (F.J. Ruiz-Rodriguez), fjurado@ujaen.es (F. Jurado).

Nomenclature

a_i real constantsCmultivariable input random variable of the RDSCOPCopuladany given day of the week($d = 1,, 7$)ddily distance covered by an EV d_i maximum range of an EVE(E)initial SOC of the battery at the beginning of a recharge cycle, being $d(L_1)$ the the distance covered by the EVEdistance covered the battery $f_c(C_i)$ PDF of the continuousunivariate random variable C_i $f_c(C_i)$ CDF of the univariate random variable C_i $f_c(C_i)$ CDF of the univariate random variable C_i $f_c(C_i) = \int_{-\infty}^{\infty} f_c(C_i) 2(C_i)$ F_c^{-1} inverse distribution function of the univariate random variable C_i $g_{c_i}(T_k)$ PDF of the random variable EV parking duration $g_{c_i}(B_i)$ $g_{c_i}(B_i)$ $g_{c_i}(B_i)$ $g_{c_i}(B_i)$ $g_{c_i}(B_i)$ $g_{c_i}(G_i)$ $Q_{c_i}(G_i)$ $Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)Q_{c_i}(G_i)<$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
COP Copula Copula Copula Coputer Copu
d any given day of the week($d = 1,, 7$) d daily distance covered by an EV d_r maximum range of an EV $E(E')$ initial SOC of the battery at the beginning of a recharge cycle, being $d(L_1)$ the the distance covered by the EV d_S creates SOC of the battery $f_C(C_1)$ PDF of the continuousunivariate random variable C_1 $f_C(C_1)$ PDF of the univariate random variable C_1 $(F_C(C_1) = \int_{-\infty}^{\infty} f_C(C_1) dC_1)$ F_C^{-1} inverse distribution function of the univariate random variable C_1 $F_C(C_1)$ PDF of the random variable EV parking duration $G_0(B_0)$ real (imaginary) part of the element in the bus admittance matrix $G_{r_L,d}$ global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance on a β filted surface $G_{r_L,d}$ (d_L) global irradiance function of random variable C K_L hourly diffuse fraction K_L daily clearness index $L_1(L_1)$ distance travelled of the ith rip for an EV in km (p.u.) $M_C(5)$ moment-generating function of random variable C m any given nomth($m = 1,, 12$) n any given commercial load node of the RDS n_R number of RDS nodes n_R number of RDS nodes with EV n_F number of RDS nodes with EV n_F number of RDS nodes with load n_R sample size n_R any given residential load node of the RDS n_R any given RDS nodes with a PV unit n_R any given RDS nodes with a PV unit n_R any given RDS nodes with a PV unit n_R any given RDS nod
d daily distance covered by an EV (maximum range of an EV E(E) initial SOC of the battery at the beginning of a recharge cycle, being $d(L_1)$ the the distance covered by the EV E discrete SOC of the battery $F_c(C_1)$ DPF of the continuousunivariate random variable C_1 $F_c(C_1)$ CDF of the univariate random variable C_1 $F_c(C_1) = \int_{-\infty}^{\infty} f_c(Q_1) G(1)$ F_c^{-1} inverse distribution function of the univariate random variable C_1 $F_c(T_1) = \int_{-\infty}^{\infty} f_c(Q_1) G(1)$ F_c^{-1} inverse distribution function of the univariate random variable C_1 $F_c(T_1) = \int_{-\infty}^{\infty} f_c(Q_1) G(1)$ F_c^{-1} inverse distribution function of the univariate random variable C_1 $F_c(T_1) = \int_{-\infty}^{\infty} f_c(Q_1) G(1)$ real (imaginary) part of the element in the bus admittance matrix $G_{B,B}$ global irradiance on a β tilted surface $G_{B,G}$ global (diffuse) irradiation $H_a(H_d)$ global (diffuse) irradiation $H_a(H_d)$ poloal (diffuse) irradiation $H_a(H_d)$ poloal (diffuse) irradiation frandom variable C K_d hourly diffuse fraction K_f daily clearness index $L_1(I_1)$ distance travelled of the fith trip for an EV in km (p.u.) $M_c(C_1)$ moment-generating function of random variable C m any given number $M_c(T_d)$ moment-generating function of random variable C m any given BS node m_a number of RDS nodes m_a number of RDS nodes with EV n_f number of IBS nodes with EV n_f number of IBS nodes with EV n_f number of IBS nodes with EV n_f number of RDS nodes with a PU unit m_a any given RDS node with a representative parking lot n_{pv} number of RDS nodes with EV n_f number of RDS nodes with a PU unit n_f any given residential load node of the RDS n_f random variable IDS nodes with a PU unit n_f
$\begin{array}{ll} d_{r} & \maximum range of an EV \\ E(F) & \minital SOC of the battery at the beginning of a recharge cycle, being d(L_{I}) the the distance covered by the EVE discrete SOC of the battery f_{c}(C_{I}) & \mbox{PM} for the discrete univariate random variable C_{I} & \mbox{F}_{c}(C_{I}) & \mbox{PM} for the discrete univariate random variable C_{I} & \mbox{F}_{c}(C_{I}) & \mbox{CF} for the univariate random variable C_{I} & \mbox{F}_{c}(C_{I}) & \mbox{CF} for the univariate random variable C_{I} & \mbox{F}_{c}(C_{I}) & \mbox{CF} for the univariate random variable C_{I} & \mbox{F}_{c}(C_{I}) & \mbox{PF} f_{c}(C_{I}) & \mbox{DF} of the random variable EV parking duration G_{g,g,g} & \mbox{global irradiance on a β titled surface G_{g,g,g} & \mbox{global irradiance on a β titled surface G_{f_{c}}(C_{f_{c}}) & \mbox{CF} of the random variable EV parking duration H_{g}(H_{d}) & \mbox{global irradiance on a β titled surface G_{f_{c}}(C_{f_{c}}) & \mbox{CF} of the random variable Charging start time of the EV battery I_{f_{c}}(L_{f_{c}}) & \mbox{GF} of the random variable charging start time of the EV battery I_{f_{c}}(L_{f}) & \mbox{GF} of the random variable charging start time of the EV battery I_{f_{c}}(L_{f}) & \mbox{GF} of \mbox{CF} of random variable Charging start time of the EV battery I_{f_{c}}(L_{f}) & \mbox{GF} of \mbox{CF} of \m$
here by initial SUC of the battery at the beginning of a recharge cycle, being $d(L_1)$ the the distance covered by the EV distance to vertee by the battery $f_{C_1}(C_1)$ PDF of the continuous univariate random variable C_1 $F_{C_1}(C_1)$ PDF of the discrete univariate random variable C_1 $(F_{C_1}(C_1) = \int_{-\infty}^{\infty} f_{C_1}(C_1) dC_1)$ inverse distribution function of the univariate random variable C_1 $F_{C_1}^{-1}$ inverse distribution function of the univariate random variable C_1 $F_{C_1}^{-1}$ inverse distribution function of the univariate random variable C_1 $F_{C_1}^{-1}$ inverse distribution function of the univariate random variable C_1 $F_{C_1}^{-1}$ inverse distribution function of the univariate random variable C_1 $F_{C_1}^{-1}$ ($F_1(C_1) = D_1^{-\infty} f_{C_1}(C_1) dC_1$) real (imaginary) part of the element in the bus admittance matrix $G_{g,g}$ global irradiance on a β titled surface $G_{T_1}(F_1)$ DF of the random variable EV parking duration $H_1(H_2)$ global (diffuse) irradiation $H_1(H_2)$ global (diffuse) irradiation $H_1(H_2)$ pDF of the random variable charging start time of the EV battery i, j, k any given number $F_1(F_1)$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_2(F_1)$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_2(F_1)$ moment-generating function of random variable C any given RDS node R_1 any given RDS nodes R_1 number of RDS nodes R_1 number of RDS nodes with EV R_1 number of RDS nodes with EV R_1 number of RDS nodes with EV R_1 number of RDS nodes with a representative parking lot R_1 number R_1 any given residential load node of the RDS R_1 number of RDS nodes with a representative parking lot R_1 any given rometrial load node of the RDS R_1 number of RDS nodes with R_1 number of RDS nodes with R_2 R_1 number of R
Let under the solution of the battery for the battery for the battery for the battery for the continuous miximizer and on variable C_1 ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$)) F_C^{-1} inverse distribution function of the univariate random variable C_1 ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$)) F_C^{-1} inverse distribution function of the univariate random variable C_1 ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$)) F_C^{-1} inverse distribution function of the univariate random variable C_1 ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$)) F_C^{-1} inverse distribution function of the univariate random variable C_1 ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$)) F_C^{-1} inverse distribution function of the univariate random variable C_1 ($F_C(C_2) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$) F_C^{-1} ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$)) F_C^{-1} ($F_C(C_1) = \int_{-\infty}^{\infty} f_c(C_1) dC_1$) F_C^{-1} ($F_C(C_1) = f_C(C_1) dC_1$) $F_C(C_1) dC_1$ F_C^{-1} ($F_C(C_$
$\begin{aligned} f_{c_{1}}^{c_{1}}(r) & PDF of the discrimination aniable C_{1} \\ f_{c_{1}}^{c_{1}}(r) & PDF of the discrete univariate random variable C_{1} \\ & (F_{C_{1}}(r_{1}) = \int_{-\infty}^{\infty} f_{C_{1}}(r_{2})dC_{1})) \\ F_{c_{1}}^{-1} & inverse distribution function of the univariate random variable C_{1} \\ & g_{i_{k}}(r_{k}') & PDF of the random variable EV parking duration \\ & G_{i_{1}}(g_{i_{1}}) & real (inaginary) part of the element in the bus admittance matrix \\ & g_{g_{s}} & global irradiance on a \beta title surface \\ & G_{g_{s}}(r_{k}') & CDF of the random variable EV parking duration \\ & H_{g}(H_{q}) & (H_{q}) global (diffuse) irradiation \\ & H_{g}(H_{q}) & (H_{g}) global (diffuse) irradiation \\ & H_{g}(H_{q}) & (H_{g}) global (diffuse) irradiation \\ & H_{g}(H_{q}) & (H_{g}) global (H_{g}) global$
$\begin{split} f_{c_i}(\mathbf{t}_i) \text{PW} \text{ of the univariate random variable } \mathbf{t}_i \\ F_{c_i}(\mathbf{C}_i) \text{CDF of the univariate random variable } \mathbf{t}_i \\ (F_{c_i}(\mathbf{C}_i) = \int_{-\infty}^{\infty} f_{c_i}(\mathbf{C}_i) d\mathbf{C}_i)) \\ F_{c_i}^{-1} & \text{inverse distribution function of the univariate random variable} \mathbf{t}_i \\ g_{ij}(\mathbf{f}_{ij}) \text{PDF of the random variable EV parking duration} \\ G_{ij}(B_{ij}) \text{real (imaginary) part of the element in the bus admittance matrix} \\ \mathbf{G}_{\mathbf{g},\mathbf{a}} & \text{global irradiance on a η the element in the bus admittance matrix} \\ \mathbf{G}_{\mathbf{g},\mathbf{a}} & \text{global irradiance on a η the element in the bus admittance matrix} \\ \mathbf{G}_{\mathbf{g},\mathbf{a}} & \text{global irradiance on a η the element in the bus admittance matrix} \\ \mathbf{G}_{\mathbf{g},\mathbf{a}} & \text{global irradiance on a η this durate } \\ \mathbf{G}_{\mathbf{f}_{\mathbf{a}}}(\mathbf{t}_{\mathbf{k}}) & \text{CDF of the random variable EV parking duration} \\ \mathbf{H}_{\mathbf{g}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance on a η this durate } \\ \mathbf{H}_{\mathbf{g}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance on a η this durate } \\ \mathbf{H}_{\mathbf{g}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance on a η this durate } \\ \mathbf{H}_{\mathbf{g}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance on a η this durate '\eta$ and mon variable EV parking duration \\ \mathbf{H}_{\mathbf{g}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance on a η this durate '\eta$ and m variable EV parking duration \\ \mathbf{H}_{\mathbf{g}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance matrix} & \text{global irradiance matrix} \\ \mathbf{H}_{\mathbf{d}}(\mathbf{H}_{\mathbf{d}}) & \text{global irradiance matrix} & \text{global irradiance matrix} & \text{global irradiance matrix} \\ \mathbf{H}_{\mathbf{d}}(\mathbf{h}) & \text{distance travelet} & \text{for into into a frandom variable EV battery \\ \mathbf{h}_{\mathbf{d}}(\mathbf{h}) & \text{distance travelet} & \text{of the this for an EV} in km (p.u.) \\ \mathbf{M}_{\mathbf{d}}(\mathbf{h}) & \text{moment-generating function of random variable C \\ \mathbf{h}_{\mathbf{n}} & \text{my given noth}(m=1,,12) \\ \mathbf{n} & \text{any given noth}(m=1,,12) \\ \mathbf{n} & \text{any given commercial load node of the RDS \\ \mathbf{n}_{\mathbf{d}} & \text{any given commercial load node of the RDS \\ \mathbf{n}_{\mathbf{d}} & any given residential load node of$
$\begin{aligned} F_{C_i}(\mathbf{c}_i) & \text{CDF of the univariate random variable } \mathbf{c}_i \\ & (F_{C_i}(\mathbf{c}_i) = \int_{-\infty}^{\infty} f_{C_i}(\mathbf{c}_i) (\mathbf{c}_i) (\mathbf{c}_i) (\mathbf{c}_i) \\ & \text{inverse distribution function of the univariate random variable} \mathbf{C}_i \\ & \text{pDF of the random variable EV parking duration} \\ & \mathbf{g}_{I_i}(\mathbf{f}_k) & \text{PDF of the random variable EV parking duration} \\ & \mathbf{g}_{I_i}(\mathbf{f}_k) & \text{PDF of the random variable EV parking duration} \\ & \mathbf{f}_{I_i}(\mathbf{f}_k) & \text{PDF of the random variable EV parking duration} \\ & \mathbf{f}_{I_i}(\mathbf{f}_k) & \text{PDF of the random variable EV parking duration} \\ & \mathbf{f}_{I_i}(\mathbf{f}_k) & \text{PDF of the random variable EV parking duration} \\ & \mathbf{f}_{I_i}(\mathbf{f}_k) & \text{PDF of the random variable Charging start time of the EV battery} \\ & i,j,k & any given number \\ & \mathbf{K}_i & courly diffuse fraction & frandom variable C \\ & \mathbf{K}_i & daily clearness index \\ & \mathbf{L}_i(\mathbf{l}_i) & distance travelled of the ith trip for an EV in km (p.u.) \\ & \text{Moent-generating function of random variable C } \\ & m & any given month(m = 1,, 12) \\ & n & any given RDS node \\ & n_n & unuber of RDS nodes \\ & n_d & any given commercial load node of the RDS \\ & n_{il} & any given commercial load node of the RDS \\ & n_i & any given industrial load node of the RDS \\ & n_i & any given RDS nodes with EV \\ & n_i & any given RDS nodes with EV \\ & n_i & any given RDS nodes with BAC \\ & n_i & any given random striable and and of the RDS \\ & n_i & any given industrial load node of the RDS \\ & n_i & any given random striable and \\ & n_i & any given random striable and \\ & number of RDS nodes with a PV unit \\ & n_{il} & any given RDS node with a representative parking lot \\ & n_{pv} & number of RDS nodes with a PV unit \\ & n_{pv} & number of RDS nodes with a PV unit \\ & n_{pv} & number of RDS node with a representative parking lot \\ & n_{pv} & number of RDS node with a representative parking lot \\ & n_{pv} & number of RDS node with a PV unit \\ & n_{pv} & number of RDS node with a PV unit \\ & n_{pv} & number of RDS node with a PV unit \\ & n_{pv}$
$ (F_{C_i}(C_i) = \int_{-\infty}^{-} f_{C_i}(C_i)dC_i)) $ $ F_{C_i}^{-1} $ inverse distribution function of the univariate random variable C_i $ g_{t_k}(T_k) $ PDF of the random variable EV parking duration $ G_{ij}(B_{ij}) $ real (imaginary) part of the element in the bus admittance matrix $ G_{g,a} $ global irradiance on a β filted surface $ G_{r_k}(T_k) $ CDF of the random variable EV parking duration $ H_g(H_d) $ (H_d) global (diffuse) irradiation $ H_g(H_d) $ (H_d) global (diffuse) irradiation $ H_r(t_k) $ PDF of the random variable charging start time of the EV battery $ i, j, k $ any given number $ K_C(\xi) $ cumulant-generating function of random variable C $ K_d $ hourly diffuse fraction $ K_t $ Cdaily clearness index $ L_i(l_i) $ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $ M_C(\xi) $ moment-generating function of random variable C $ R_d $ number of RDS nodes $ n_d $ any given nomtim ($m = 1,, 12$) $ n $ any given commercial load node of the RDS $ n_{ev} $ number of RDS nodes with EV $ n_f $ number of RDS nodes with EV $ n_f $ number of RDS nodes with EV $ n_f $ any given RDS node with a representative parking lot $ n_{ev} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ any given RDS node with a representative parking lot $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with load $ n_s $ sample size $ n_{p_v} $ number of RDS nodes with a representative parking lot $ n_{p_v} $ number of RDS nodes with a representative parking lot $ n_{p_v} $ number of RDS nodes with a representative parking lot $ n_{p_v} $ number of RDS nodes with a representative parking
F_c^{-1} inverse distribution function of the univariate random variable C_i $g_{t_k}'(f_k)$ PDF of the random variable EV parking duration $G_{ij}(B_{ij})$ real (imaginary) part of the element in the bus admittance matrix $G_{g,a}$ global irradiance on a β tilted surface $G_{r_k}(f_k)$ CDF of the random variable EV parking duration $H_g(H_d)$ (H_d) global (diffuse) irradiation $h_{t_k}(t_k)$ PDF of the random variable charging start time of the EV battery i, k any given number $K_c(\zeta)$ cumulant-generating function of random variable C k_d hourly diffuse fraction K_t dialy clearness index $L_i(l_i)$ distance travelled of the ith trip for an EV in km (p.u.) $M_c(\zeta)$ moment-generating function of random variable C n any given momb($m = 1,, 12$) n any given commercial load node of the RDS n_{ev} number of RDS nodes n_l number of RDS nodes with EV n_l number of RDS nodes with load n_l number of RDS nodes with load n_k sample size n_{pv} number of RDS node with a representative parking lot n_{pv} number of RDS node with a representative parking lot n_{pv} number of RDS node with a PU unit n_{pv} number of RDS node with a PU unit n_{pv} number of RDS node with a PU unit n_{pv} number of RDS node with a PU unit n_{pv} number of RDS node with a PU unit n_{pv} number of RDS node with a PU
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{ll} G_{ij}(B_{ij}) & \mbox{real (imaginary) part of the element in the bus admittance matrix $$$ g_{g,b}$ global irradiance on a $$$ tilted surface $$$ G_{i,c}(t_k) & CDF of the random variable EV parking duration $$$ H_g(H_d) & (H_d) global (diffuse) irradiation $$$ h_{t_i}(t_k) & PDF of the random variable charging start time of the EV battery $$$$ i, j, k$ any given number $$$$ (c) cumulant-generating function of random variable C $$$$ k_d & hourly diffuse fraction $$$$ k_t & hourly diffuse fraction $$$$ k_t & hourly diffuse fraction of random variable C $$$$$ k_d & hourly diffuse fraction $$$$$ for any given moment of random variable C $$$$$$$$$$$ moment-generating function of random variable C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{aligned} & \mathbf{H}_{g}^{\prime}(\mathbf{H}_{d}) & (\mathbf{H}_{d}) \text{ global (diffuse) irradiation} \\ & h_{t_{k}}(t_{k}) & \text{PDF of the random variable charging start time of the EV battery} \\ & i, j, k & \text{any given number} \\ & K_{C}(\tilde{s}) & \text{cumulant-generating function of random variable } \mathbf{C} \\ & \mathbf{k}_{d} & \text{hourly diffuse fraction} \\ & \mathbf{K}_{t} & \text{daily clearness index} \\ & \mathbf{L}_{t}(\mathbf{l}_{t}) & \text{distance travelled of the ith trip for an EV in km (p.u.)} \\ & \mathbf{M}_{C}(\tilde{s}) & \text{moment-generating function of random variable } \mathbf{C} \\ & m & \text{any given month}(m = 1,, 12) \\ & n & \text{any given month}(m = 1,, 12) \\ & n & \text{any given mometrial load node of the RDS} \\ & n_{ev} & \text{number of RDS nodes} \\ & n_{d} & \text{any given commercial load node of the RDS} \\ & n_{ev} & \text{number of RDS nodes with EV} \\ & n_{f} & \text{number of RDS nodes with EV} \\ & n_{f} & \text{number of RDS nodes with EV} \\ & n_{g} & \text{number of RDS nodes with EV} \\ & n_{g} & \text{number of RDS nodes with EV} \\ & n_{g} & \text{number of RDS nodes with EV} \\ & n_{g} & \text{number of RDS nodes with EV} \\ & n_{g} & \text{number of RDS nodes with EV} \\ & n_{g} & \text{number of RDS nodes with a PO unit} \\ & n_{g} & \text{number of RDS nodes with a representative parking lot} \\ & n_{gv} & \text{number of RDS nodes with a PV unit} \\ & n_{r_{i}} & \text{any given residential load node of the RDS} \\ & n_{r_{i}} & \text{random variable number} \\ & N_{c} & \text{number of 10-min intervals required for full charging process of the EV battery} \\ & P_{ev} & \text{discrete charging power level of the EV battery} \\ & P_{ev} & \text{charging power level of the EV battery} \\ & P_{ev} & \text{continuous charging power of a traditional generator} \\ & P_{loss} & \text{total real loss in the RDS} \\ & to$
$h_{\mathbf{k}_{\mathbf{k}}(\mathbf{t}_{\mathbf{k}})$ PDF of the random variable charging start time of the EV battery i,j,k any given number $K_{\mathbf{c}}(\mathbf{c})$ cumulant-generating function of random variable \mathbf{C} $k_{\mathbf{d}}$ hourly diffuse fraction $K_{\mathbf{t}}$ daily clearness index $L_{\mathbf{i}}(\mathbf{l})$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_{\mathbf{c}}(\mathbf{c})$ moment-generating function of random variable \mathbf{C} m any given month($m = 1,, 12$) n any given RDS node n_n number of RDS nodes n_d any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_f number of BDS nodes of the RDS n_{il} any given industrial load node of the RDS n_{il} any given south to add n_s sample size n_{pv} number of RDS nodes with a representative parking lot n_{pv} number of RDS nodes with a PV unit n_{pr} number of 10-min intervals required for full charging process of the EV battery P_{ev} continuous charging power level of the EV battery P_{ev} continuous charging power of a traditional generator P_{ev} continuous charging power of a traditional generator $P_{log}(Q_g)$ real loss in the RDS
i,j,k any given number $K_{C}(\xi)$ cumulant-generating function of random variable C k_{d} hourly diffuse fraction K_{t} daily clearness index $L_{l}(l_{l})$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_{C}(\xi)$ moment-generating function of random variable C m any given month($m = 1,, 12$) n any given RDS node n_{n} number of RDS nodes n_{d} any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_{f} number of RDS nodes with EV n_{f} number of RDS nodes with EV n_{g} any given industrial load node of the RDS n_{ull} any given industrial load node of the RDS n_{gv} number of RDS nodes with EV n_{f} number of RDS nodes with load n_{s} sample size $n_{p_{k}}$ any given RDS node with a representative parking lot n_{pv} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rv} random variable number N_{c} number of 10-min intervals required for full charging process of the EV battery P_{ev} discret charging power level of the EV battery P_{ev} continuous charging power of a traditional generator P_{v} continuous charging powe
$K_{C}(\xi)$ cumulant-generating function of random variable C k_{d} hourly diffuse fraction K_{t} daily clearness index $L_{l}(l_{l})$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_{C}(\xi)$ moment-generating function of random variable C m any given month($m = 1,, 12$) n any given RDS node n_n number of RDS nodes n_d any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_f number of RDS nodes with EV n_l any given industrial load node of the RDS n_{ull} any given industrial load node of the RDS n_{ull} number of RDS nodes with EV n_f number of RDS nodes with load n_s sample size n_{l} number of RDS nodes with load n_s sample size n_{pv} number of RDS nodes with a representative parking lot n_{pv} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of a traditional generator P_{los} total real loss in the RDS
k_d hourly diffuse fraction K_t daily clearness index $L_i(l_i)$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_C(\xi)$ moment-generating function of random variable C m any given month($m = 1,, 12$) n any given RDS node n_n number of RDS nodes n_d any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_f number of RDS nodes with EV n_f number of RDS nodes with EV n_{fl} number of RDS nodes with load n_{sv} number of RDS nodes with load n_{st} any given industrial load node of the RDS n_{il} any given RDS node with a representative parking lot n_p_{v} number of RDS nodes with a representative parking lot n_{pv} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of a traditional generator P_{loss} total real loss in the RDS
K_t daily clearness index $I_i(l_i)$ distance travelled of the <i>i</i> th trip for an EV in km (p.u.) $M_C(\xi)$ moment-generating function of random variable C m any given month($m = 1,, 12$) n any given RDS node n_n number of RDS nodes n_d any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_f number of RDS nodes with EV n_{fil} number of RDS nodes with and node of the RDS n_{ev} number of RDS nodes with Iod n_il any given industrial load node of the RDS n_{lil} any given RDS nodes with load n_s sample size n_{p_k} any given RDS nodes with a representative parking lot n_{p_v} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of a traditional generator P_{loss} total real loss in the RDS
$\begin{array}{ll} L_{i}(l_{i}) & \text{distance travelled of the ith trip for an EV in km (p.u.)} \\ M_{C}(\xi) & \text{moment-generating function of random variable } C \\ m & \text{any given month}(m = 1,, 12) \\ n & \text{any given RDS node} \\ n_{n} & \text{number of RDS nodes} \\ n_{d} & \text{any given commercial load node of the RDS} \\ n_{ev} & \text{number of RDS nodes with EV} \\ n_{f} & \text{number of RDS nodes with EV} \\ n_{f} & \text{number of RDS nodes with EV} \\ n_{l} & \text{number of RDS nodes with load} \\ n_{s} & \text{sample size} \\ n_{p_{k}} & \text{any given RDS node with a representative parking lot} \\ n_{p_{v}} & \text{number of RDS nodes with a PV unit} \\ n_{rl} & \text{any given residential load node of the RDS} \\ n_{v} & \text{random variable number} \\ N_{c} & \text{number of 10-min intervals required for full charging process of the EV battery} \\ P_{ev} & \text{charging power of anith single EV} \\ P_{ev}^{\circ} & \text{continuous charging power of the EV battery} \\ P_{ev}^{\circ} & \text{continuous charging power of a traditional generator} \\ P_{loss} & \text{all of is in the RDS} \\ n_{l} & \text{classing the RDS} $
$ \begin{array}{ll} M_{C}(\varsigma) & \text{moment-generating function of random variable C} \\ m & \text{any given month}(m=1,,12) \\ n & \text{any given RDS node} \\ n_n & \text{number of RDS nodes} \\ n_d & \text{any given commercial load node of the RDS} \\ n_{ev} & \text{number of RDS nodes with EV} \\ n_f & \text{number of RDS nodes with EV} \\ n_f & \text{number of RDS nodes with Ioad} \\ n_s & \text{sample size} \\ n_{p_k} & \text{any given RDS node with a representative parking lot} \\ n_{p_{V}} & \text{number of RDS nodes with a PV unit} \\ n_{rl} & \text{any given residential load node of the RDS} \\ n_{rv} & \text{random variable number} \\ N_c & \text{number of 10-min intervals required for full charging process of the EV battery} \\ P_{ev} & \text{continuous charging power of the EV battery} \\ P_{ev} & \text{continuous charging power of a traditional generator} \\ P_{\text{toss}} & \text{total real loss in the RDS} \\ p_{\text{total real loss in the RDS} \\ p_{total re$
m any given motified $(m = 1,, 12)$ n any given RDS node n_n number of RDS nodes n_d any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_f number of lines of the RDS n_{ll} any given industrial load node of the RDS n_{ll} any given industrial load node of the RDS n_{ll} number of RDS nodes with load n_s sample size n_{pk} any given RDS node with a representative parking lot n_{pv} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} charging power of anith single EV P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of a traditional generator P_{los} b P_{los} b
n_n number of RDS nodes n_d any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_{f} number of lines of the RDS n_{il} any given industrial load node of the RDS n_{il} any given industrial load node of the RDS n_{il} number of RDS nodes with load s sample size n_{pk} any given RDS node with a representative parking lot n_{pv} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{ru} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} charging power of anith single EV P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of a traditional generator P_{loss} total real loss in the RDS
n_{d} any given commercial load node of the RDS n_{ev} number of RDS nodes with EV n_{f} number of lines of the RDS n_{il} any given industrial load node of the RDS n_{il} number of RDS nodes with load n_{s} sample size $n_{p_{k}}$ any given RDS node with a representative parking lot $n_{p_{v}}$ number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rv} random variable number N_{c} number of 10-min intervals required for full charging process of the EV battery P_{ev} charging power of anith single EV P_{ev} continuous charging power of the EV battery $P_{gv}(Q_{g})$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
n_{ev} number of RDS nodes with EV n_{f} number of lines of the RDS n_{il} any given industrial load node of the RDS n_{il} number of RDS nodes with load n_s sample size n_{p_k} any given RDS node with a representative parking lot n_{p_v} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{ril} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} charging power of anith single EV P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of a traditional generator P_{loss} total real loss in the RDS
n_f number of lines of the RDS n_{il} any given industrial load node of the RDS n_l number of RDS nodes with load n_s sample size n_{p_k} any given RDS node with a representative parking lot n_{p_v} number of RDS nodes with a PV unit n_{p_v} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{r_l} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{e_v} discrete charging power level of the EV battery P_{e_v} continuous charging power of the EV battery P_{e_v} continuous charging power of a traditional generator P_{loss} total real loss in the RDS
n_{il} any given industrial load node of the RDS n_l number of RDS nodes with load n_s sample size n_{p_k} any given RDS node with a representative parking lot $n_{p_{\nu}}$ number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS $n_{r\nu}$ random variable number N_c number of 10-min intervals required for full charging process of the EV battery $P_{e\nu}$ discrete charging power level of the EV battery $P_{e\nu_i}$ charging power of anith single EV $P_{e\nu_i}$ continuous charging power of the EV battery $P_{g}(Q_g)$ real (reactive) generation power of a traditional generator P_{los} total real loss in the RDS
n_l number of RDS nodes with load n_s sample size n_{p_k} any given RDS node with a representative parking lot n_{p_v} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_l} charging power of anith single EV P_{ev_l} continuous charging power of the EV battery $P_{g(Q_g)}$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
n_s sample size n_{p_k} any given RDS node with a representative parking lot n_{p_v} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rl} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_i} charging power of anith single EV P_{ev_i} continuous charging power of the EV battery $P_{go}(Q_g)$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
n_{p_k} any given RDS node with a representative parking lot n_{p_v} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{r_l} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_i} charging power of anith single EV P_{ev} continuous charging power of the EV battery P_{ev} real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
n_{pv} number of RDS nodes with a PV unit n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_i} charging power of anith single EV P_{ev_i} continuous charging power of the EV battery P_{ev_i} continuous charging power of the EV battery $P_{g(Q_g)}$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
n_{rl} any given residential load node of the RDS n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_i} charging power of anith single EV P_{ev_i} continuous charging power of the EV battery P_{ev_i} continuous charging power of the EV battery $P_{g(Qg)}$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
n_{rv} random variable number N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_i} charging power of anith single EV P_{ev_i} continuous charging power of the EV battery P_{ev_i} continuous charging power of the EV battery $P_{g}(Q_g)$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
N_c number of 10-min intervals required for full charging process of the EV battery P_{ev} discrete charging power level of the EV battery P_{ev_i} charging power of anith single EV P_{ev} continuous charging power of the EV battery P_{ev} continuous charging power of the EV battery $P_{g}(Q_g)$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
P_{ev} discrete charging power level of the EV battery P_{ev} charging power of anith single EV P_{ev}° continuous charging power of the EV battery $P_{g}(Q_g)$ real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
$\begin{array}{ll} P_{ev_i} & \text{charging power of antri single EV} \\ P_{ev}^{\circ} & \text{continuous charging power of the EV battery} \\ P_g(Q_g) & \text{real (reactive) generation power of a traditional generator} \\ P_{loss} & \text{total real loss in the RDS} \\ \end{array}$
P_{gv} real (reactive) generation power of a traditional generator P_{loss} total real loss in the RDS
P_{loss} total real loss in the RDS
$P_{I}(\mathbf{U}_{I})$ real (reactive) load power
P_{pv} PV power
<i>P</i> _{<i>tev</i>} total charging power for a given set of EVs
q any given 10-min interval in a day ($q = 1,, 144$)
r any given number
$S_{f,i-j}$ apparent power flow in line connecting node <i>i</i> and <i>j</i>
<i>t_k</i> charging start time of the EV battery
t'_k EV parking duration in which the EV battery is charged
t_x xth 10-min interval
 internal time in a full charging process of the EV battery time required for a full charging process of the EV battery
$U_i(U_c)$ univariate uniform distribution (associated with random variable C_i)

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران