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A B S T R A C T

Demand-side Management (DSM) algorithms are exposed to several uncertainties due to their dependency on
renewable energy generation forecasts. On the large scale, generation and load forecasts can be relatively ac-
curate, yet on the residential scale, forecasting errors increase due to higher uncertainties. One potential solution
is to incorporate a probabilistic PV forecast into an optimal DSM algorithm instead of the existing deterministic
PV forecasting algorithms. Hence, in this contribution, a numerical analysis that compares the potential of using
a probabilistic PV forecast instead of the conventional deterministic algorithms in a DSM algorithm, is presented.
Results show that under different household energy system configurations, the DSM algorithm with the prob-
abilistic PV generation forecast leads to an increase in self-sufficiency and self-consumption by 24.2% and
17.7%, respectively, compared to the conventional deterministic algorithms. These results indicate that prob-
abilistic PV forecasting algorithms may indeed have a higher potential compared to the conventional determi-
nistic ones.

1. Introduction

Recent energy policies currently play an influential role in re-
shaping the electricity grid infrastructure globally. Green energy in-
centives were introduced over the past 25 years to enable the integra-
tion of more renewables, and embrace a low-carbon economy. In
Germany, the renewable energy sources act Erneuerbare Energien
Gesetz (EEG), was introduced in 2000, along with amendments till
2014 to prioritize the access of renewable energy sources (RES) to the
grid (Wüstenhagen and Bilharz, 2006). This act enabled rapid in-
tegration of wind energy and photovoltaics (PV) through guaranteeing
the supplier an energy purchase at a fixed tariff (Federal Ministry for
Economic Affairs and Energy, 2015). Enforcing similar acts, along with
the consistent decrease of investment costs in PV systems, led to a boost
in the installation of PV systems, especially in the residential sector. In
this sector, the installed capacities represents 39.4% of the overall ca-
pacities compared to 19.2% for the commercial and industrial sectors
(Maron et al., 2011). Consequently, PV integration within the re-
sidential sector has become a continuous research topic, with crucial
economic implications for single households (Nikmehr et al., 2017).

For these households, electricity bills need to be minimized to re-
duce the investment costs for the residents (Zhou et al., 2016; Shakeri
et al., 2017; Celik et al., 2017). In addition, autonomy and self-con-
sumption need to be considered, yet they are byproducts of cost

optimization and electricity bill minimization. Cost optimization is
reached via applying demand side management (DSM), through which
the loads are shifted and coordinated to maximize the use of the
available PV generation within the residential household. Several re-
search projects detailed the type of shiftable loads that could be in-
tegrated such as the white goods (e.g. washing machine, dish washer
and the tumble dryer), heat pumps, or electrical vehicles [EV]
(Lehrstuhl für Energiewirtschaft und Anwendungstechnik; El-Baz et al.,
2016; El-Baz and Tzscheutschler, 2014). Others integrated thermal and
electrical storages, or a micro combined heat and power cycle (micro-
CHP) as an additional in-house energy supply source. All these com-
ponents are always connected together through an energy management
system (EMS), where the DSM strategy is realized. In all such possible
configurations, the PV system was a dominant component. Thus, PV
generation forecast is necessary for shifting the desired loads to the
most suitable time-slot in the future.

Applied DSM strategy performance is highly dependent on the
quality of the PV forecast. Hanna et al. (2014) showed the impact of
forecast error on battery discharging behavior, where the forecast er-
rors in specific days reached twice to ten times the battery energy ca-
pacity and led to a void dispatch schedule. Klingler and Teichtmann
(2017) demonstrated the need for a better PV forecasting data for a grid
friendly PV+Battery system. At the moment, there is a gap in the
research tackling or providing solutions to the small-scale residential
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PV forecast implications on DSM. In other words, no clears answers are
presented in the literature addressing and defining the required accu-
racy for rooftop PV forecast, the variability and uncertainity effect on
the DSM in the residential sector, or the forecast type (i.e. probabilistic,
or deterministic) required for DSM algorithms in real-life conditions.

1.1. Study objectives

Hence, the objective of this contribution is to provide answers to
these questions via analyzing the potential of incorporating a prob-
abilistic forecast instead of a conventional deterministic one in the DSM
algorithm. This potential is then analyzed based on defined metrics to
demonstrate whether the probabilistic forecast would lead to a different
operation plan for the household devices, and whether the new op-
eration plan would lead to a significant increase in self-energy con-
sumption and autonomy of the household. To show the effect of the
forecast independently on the operation of the DSM algorithm, a simple
algorithm was implemented that can fit to both the probabilistic fore-
cast and the conventional deterministic forecast. In a separate pub-
lication (El-Baz et al., submitted for publication), the probabilistic PV-
forecast algorithm was detailed, where multiple PV generation curves
were produced based on a statistical probabilistic analysis. In this
contribution, the impact of such an algorithm on an EMS is presented to
evaluate the potential of probabilistic forecast.

This contribution is structured as follows: Section 2 provides a
background of the related literature in the field of DSM and PV gen-
eration forecasts. Section 3 presents the methodology and metrics used
to evaluate the potential of DSM. Section 4 presents the results of a
comparison between the potential of DSM under the probabilistic
forecast and a conventional reference forecast. Section 5 provides the
concluding remarks.

2. Background

2.1. DSM in households

DSM was introduced in the late 1970s (Lampropoulos et al., 2013)
to encourage consumers to alter their load to produce a desired load
profile for the utility. This means that the customer in this case needs to

alter both the magnitude and the time pattern of the load to fit to the
utility’s plan. Thus, the scope of DSM incorporates several strategies
such as peak clipping, valley filling, load shifting, strategic conserva-
tion, strategic load growth, and flexible load shaping (Gellings, 1985).
The utility encourages the consumers to shift their own loads using fi-
nancial incentives. Therefore, Real-Time Price (RTP) and Time-of-Use
(ToU) tariffs were introduced so that the customers can shift their load
from the peak hours to the off-peak hours (Strbac, 2008).

Several theoretical studies and pilot projects investigated the po-
tential of DSM strategies on different scales (Meyabadi and Deihimi,
2017; Finn et al., 2013; Jiang et al., 2017; Gottwalt et al., 2011). To
study the impact of DSM on different electricity tariffs, Gottwalt et al.
(2011) developed a model to generate household load profiles and si-
mulated them under flat-tariffs and time-based tariffs. The author found
that several household loads are available for shifting, which benefit
the utility to balance the supply and demand. To simulate real-world
factors, Yang and Xia (2017) included in his contribution not only the
electricity tariffs, but also the environmental performance and re-
sidents’ behavior. The authors found that a combination of optimal
DSM along with local energy supply sources could significantly reduce
the electricity import from the grid and minimize the expenditure.
Storage systems such as batteries and heat storages, in addition to the
thermal mass of the buildings, also play a major role in enabling the
DSM. Shakeri et al. (2017), Arteconi et al. (2017) and Shi et al. (2016)
among others used storages to enable shifting and reducing the loads
for extended hours depending on the consumer’s demand and building
type.

Different algorithms were presented in the literature, which applied
different techniques such as artificial neural networks (ANN)
(Matallanas et al., 2012), stochastic optimization (Galvan-Lopez et al.,
2015), mixed-integer nonlinear programming (MINLP) (Yang et al.,
2017), or greedy approach (Shi et al., 2016). Along with the variations
in the algorithms, the combinations with the PV systems varied. PV
along with batteries, EV, or heat pumps were considered. In all these
cases, PV forecast was used for the control algorithm to make DSM
decisions 6 h, 12 h or 24 h ahead (Matallanas et al., 2012). These al-
gorithms are categorized as open-loop: the DSM strategy defined the
optimal plan of the loads in future time-slots based on the current
forecast without considering any uncertainties of supplied forecasts.

Nomenclature

tΛ( )t relative difference training variable
λi relative difference of a training set
cc cloudiness
cchigh high-level cloudiness
cclow low-level cloudiness
ccmid mid-level cloudiness
Dud device duration
Ef ded-in energy
Eg imported energy
ew ratio of self-consumption to self-sufficiency
Esc self-consumed energy
esc self-consumption
ess self-sufficiency
f mid-level cloudiness coefficient
F λ( )i i cumulative distribution of a specific category
G generation profile
i training set category
Ind device interruptibility
j high-level cloudiness coefficient
k low-level cloudiness coefficient
L load profile
O overlapping profile

Ocr absolute number of occurrences
Pccs PV calibrated clear sky power generation
Pclearsky PV cleary sky power generation
Pcs PV clear sky power generation
Pdailymax PV daily maximum power generation
Pd device power
P fr reference PV forecast power generation
Pm PV measured power generation
Pm PV measured power
Ppccs PV clear sky power generation after partial shading de-

tection
Ppf PV point forecast
pppq

PV probabilistic forecast curve
Ppp PV probabilistic forecast
Prd device probability of multiple usage
Q cumulative probability of occurence set
q specific probability of occurence
t time
tf forecast time horizon
Tn end of training period
tt training time
wrRMSE weighted relative root mean squared error
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