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A B S T R A C T

Residential customers are increasingly participating in demand response program for both economic savings and
environmental benefits. For example, baseline estimation-based rewarding mechanism is currently being de-
ployed to encourage customer participation. However, the deterministic baseline estimation method good for
commercial users was found to create erroneous rewards for residential consumers. This is due to larger un-
certainty associated with residential customers and the inability of a deterministic approach to capturing such
uncertainty. Different than the deterministic approach, we propose to conduct probabilistic baseline estimation
and pay a customer over a period of time when the customer’s predicted error decreases due to reward ag-
gregation. To achieve this goal, we analyze 12,000 residential customers’ data from PG&E and propose a
Gaussian Process-based rewarding mechanism. Real data from PG&E and OhmConnect are used in validating the
algorithm and showing fairer payment to residential customers. Finally, we provide a theoretical foundation that
the proposed method is always better than the currently used industrial approaches.

1. Introduction

Federal Energy Regulatory Commission defines demand response
(DR) as electric usage adjustments by the consumers from their normal
consumption patterns [1]. Such adjustments are in response to (1)
changes in the price of electricity over time, or (2) incentive payments
designed to induce lower electricity consumption at usage peaks or
when the system reliability is jeopardized [2].

Traditional DR programs are usually designed for large commercial
customers, where a baseline is used for rewards. As the power usage of
these customers is predictable, current baseline estimation methods for
commercial users assume that the uncertainties can be ignored. So, a
deterministic baseline evaluation is used for the electricity consumption
estimation based on the no-DR period [3,4]. The difference between an
estimated normal consumption and the actual usage is used to calculate
the savings [5–7]. For example, deterministic methods such as simple
load average and temperature-based linear regression have been used
for commercial customers with satisfactory results [8–10]. DR program
had a great success with large power consumption users. GreenTech
Media reported in 2013 that 8.7 million dollars in revenue had been
generated within seven months in the Pennsylvania, Jersey, Maryland
(PJM) Power Pool by conducting demand response in system operation

with mostly large customers.
While large customers currently create a significant portion of the

revenue in the DR programs, the smaller residential consumers hold the
key to potential growth in the DR customer number and the DR rev-
enue. For example, there are 9.3 million customers participated in DR
programs by March 2016 in U.S., but more than 90% of them are in the
residential sector. In addition to making profits, DR at residential level
is also becoming an attractive solution for the radically increased re-
newable energy to balance the local power flow. For these reasons,
California Public Utilities Commission (CPUC) issued the Electric Rule
24, calling for the opening of direct participation of residential custo-
mers in DR programs. Now, consumers can call into bid for aggregated
15-min load reductions into Pacific Gas and Electric Company (PG&E)’s
Intermittent Renewable Management Pilot Phase 2 program to earn
payments directly from CAISO’s Proxy Demand Resource product.
These grid market calls can happen several times a week, compared to
the relatively rare peak events that can trigger a traditional DR.

In response to this incentive, private companies like OhmConnect
started to expand beyond utility-operated demand response for re-
sidential customers. As these consumers are reluctant to let aggregator
companies have total control of their related assets [11], a baseline-
based rewarding method for large customers was initially
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indiscriminately applied to residential customers. However, high un-
certainty in these consumers’ load consumption makes the estimation
error rate as high as 50% [12], leading to lots of complaints from par-
ticipating consumers. Therefore, a new baseline estimation method and
an accordingly reward mechanism are needed to keep the current
consumers and attract new participants.

For improving the deterministic baseline estimation, [13] proposes
to consider non-DR days preceding the DR event and choose the
average load of the highest consumption days within those days for a
baseline. Such a method is called HighXofY (used by New York In-
dependent System Operator (NYISO)). [14,15] compare HighXofY,
LowXofY, MidXofY in [13] with an exponential moving average (used
by ISO New England) and regression methods with adjustments. An
economic analysis of a hypothetical peak time rebate (PTR) program is
carried out afterward. To improve accuracy, non-DR participants can be
used in the control group [16–18]. However, it may be hard to uniquely
define the best control group that properly captures user behavior of the
treatment group (DR participants). To resolve this problem, [19] pre-
sents a clustering-based method, where customers are first divided into
groups. Within each group, DR participants’ baselines are estimated by
non-DR participants’ loads.

While there are some improvements, the drawback of deterministic
methods lies in (1) their failure to utilize the historical data in capturing
the dynamics of complex user behaviors [20,10], particularly important
for small to medium consumers with more variability [21]; and (2)
their unfair rewards which can have very different baseline estimation
errors for different DR-participants. As large utility companies have
started to make historical data available to approved third parties, e.g.,
the Green Button initiative in CA [22], we propose to (1) conduct
machine learning of historical data to capture the residential consumer
uncertainties and (2) reward customer at a similar baseline-estimation-
error rate for fairness.

Specifically, our data analytics of a fairly large residential customer
dataset shows properties of Gaussianity, so we propose to use Gaussian
Process (GP) regression for machine learning [23,24]. This is because
GP regression naturally provides the prediction of uncertainties in-
herent in the customer loads. It also has the flexibility of an adaptive
component design according to customer behavior [23]. Based on
probabilistic estimates, we further propose to reward consumers until
most users’ aggregated but averaged rewarding uncertainty decreases
to a tolerable level, e.g., 5%. Finally, we prove that Gaussian process-
based baselining method’s mean estimate is equivalent or better than
the estimates generated by currently used baseline estimation methods.

For simulation, we use an hourly PG&E dataset with 12,000 re-
sidential customers [12,25] and OhmConnect dataset with 425 users,
where the demand response period occurs in the afternoon and evening
of summer days. By using these dataset sets, the proposed method is
compared with other state-of-the-art baseline estimation approaches.
The results show that the probabilistic estimate not only has a mean
estimate better than the currently used deterministic estimates, but also
provides a new 95% confidence zone estimate, which covers true load
values completely. Notably, we add a machine learning method-based
on gradient boosting model, for comparison. Its worse performance
indicates that our data analytics for machine learning modeling is ne-
cessary for estimation accuracy. If we further aggregate a user’s esti-
mates over days based on the mean and variance estimates, the re-
warding error can reduce to 5%. This result aligns well with our
theoretical expectation thus validates the correctness of the estimate.
While we provide simulation results for all customers, we notice that
different customers reach the 5% error tolerate threshold at a different
speed. So, our suggestion of waiting until most of the consumers reach a
threshold is practical to both the aggregators and the consumers.

The innovation comes from the following: (1) motivate the need of
probabilistic baselining, (2) use load pattern to justify the Gaussian
Process (GP) modeling for residential customers, and (3) use real da-
taset for design and validation. Comparing to [26], we use feature

extraction to demonstrate why a Gaussian process is proper for mod-
eling uncertainty. We show how to embed different covariance func-
tions to the GP platform to model residential users power assumption
pattern. Instead of a simple demonstration of aggregation in users, we
also extensively simulate aggregations in the days for fairer payments.
Different user types are also compared to understand user behavior and
its impact on payments. Finally, computational time is analyzed for
large-scale implementation.

The rest of this paper is organized as follows: Section 2 reviews
current methods; Section 3 introduces the modeling and proves its su-
perior property; Section 4 shows how to utilize a probabilistic estimate
for rewards; Section 5 illustrates simulation results and Section 6 con-
cludes this paper. In Table 1, we list all the notations that will be used in
the paper sequentially.

2. Probabilistic baseline estimation for residential customers

For commercial customers, the consumption without DR signal is
quite regular. Therefore, a deterministic baseline estimation shown in
Fig. 1 is used to calculate the reward. Once the baseline estimate is
found, the difference between the actual consumption and the baseline
estimate can be used for reward calculation.

As residential customer level demand response is becoming more
important, various schemes have been developed to evaluate responsive
loads for ancillary services to grids [8].

(1) Simple Average: average loads in the past ten days.
(2) Selected Simple Average: an average of the highest (or median)

three out of ten most recent days, e.g., HighXofY [13] or MedXofY.
(3) Weighted Average: weighted average over historical loads in the

past ten days.
(4) Morning Usage Adjustment: methods above can also be

Table 1
Table of Notations

yi : historcal load data

ti : historcal temperature data
xi : a column vector containing time index i and the

temperature ti
X : xi at different time slots form the matrix
∗yi : probabilistic load estimate for the demand response period

at time index i
y : the joint probability distribution of the load data in a

vector form during the no-DR period
K (·,·) : the covariance matrix

∗μ X : the expectation for each row of ∗X
m X( ) : the expectation for each row of X

I : the identity matrix
yCov ( ) : the covariance matrix of the variable vector y

y N1: : time series output data between time 1 and time N

−y N r1: : time series output data between time 1 and time −N r

+yr N1: : time series output data between time −N r and time N
′y : the random variable that creates the empirical results of

−y N r1:
″y : the random variable that creates the empirical results of

+yr N1:
= +x xk r k( ) ( , )t t r : the covariance matrix between two time series

wi : weighted coefficient with respect to index i
T : the number of covariance functions in consideration

Ld : the actual load recorded by the smart meter
Ld estimated, : the estimated load

Sd : Ld estimated, - Ld
Pμ : The expected total reward

Pμ aggregate, : The expected and aggregated total reward

E (·) : expectation
D : the total dates for the demand response events

O (·) : Computational complexity
L (·) : Log-likelihood
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