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A B S T R A C T

An accurate and simple technique for determining the focal length of a lens is presented. It consists of
measuring the period of the fringes produced by a diffraction grating at the near field when it is illuminated with
a beam focused by the unknown lens. In paraxial approximation, the period of the fringes varies linearly with
the distance. After some calculations, a simple extrapolation of data is performed to obtain the locations of the
principal plane and the focal plane of the lens. Thus, the focal length is obtained as the distance between the two
mentioned planes. The accuracy of the method is limited by the collimation degree of the incident beam and by
the algorithm used to obtain the period of the fringes. We have checked the technique with two commercial
lenses, one convergent and one divergent, with nominal focal lengths (+100 ± 1) mm and (−100 ± 1) mm
respectively. We have experimentally obtained the focal lengths resulting into the interval given by the
manufacturer but with an uncertainty of 0.1%, one order of magnitude lesser than the uncertainty given by the
manufacturer.

1. Introduction

Accurate characterization of optical systems is crucial for applica-
tions and techniques. Among all characteristics of optical systems, the
focal length is one of the most important. There are many different
techniques for determining the focal length of a lens [1–4]. The
simplest one consists of using a very well-collimated laser beam and
determining the focal spot position by means of a screen or a two-
dimensional camera. Although, this technique is actually an approx-
imation since the focal length is commonly defined from the front
principal plane of the lens, and it is usually inaccessible. Other methods
based on moiré deflectometry utilize two diffraction gratings and
analyze the moiré fringes produced after the second grating when the
beam is converging through the lens [5–10]. In Refs. [11,12] two
methods with a single diffraction grating are presented. In [11], the
method consists of measuring the frequencies at the focal plane of the
lens and obtaining the focal length for comparison with the frequencies
of the grating. On the other hand, in [12] the method consists of
measuring the transverse distances of diffraction maxima in one
measurement at the focal plane. In Ref. [13] a Hartmann–Shack
wavefront sensor is used to determine the focal plane without knowing
the position of the principal plane of the lens. In Ref. [14] one
diffraction grating is used to determine the focal length of a lens by
measuring the demagnification of the self-images produced by the
grating illuminated by a convergent beam. However, only two positions

are used and then the accuracy is not optimal. Our impression is that
the accuracy of the method can be greatly improved. On the other hand,
Tebaldi et al. obtain the focal distance but not the location of the
principal plane nor the focal plane.

As a consequence, we propose in this work an improvement of the
method proposed in [14] where a very simple and accurate technique
for determining the focal length of a lens or lens system is presented. It
is based on the self-imaging phenomenon and consists of measuring
the period of the converging/diverging self-images produced after the
lens when it is illuminated by a collimated beam. On the contrary to ref.
[14], our method places the grating before the lens with unknown
optical parameters. Thus, it is possible to obtain the position of the
principle plane of the lens. It corresponds with the plane in which the
period of the self-images equals the period of the grating. Also, at the
focal plane the period of the self-images is zero. Then, by extrapolating
the values of the period of the self-images at several distances, it is
possible to obtain the focal distance. To increase the accuracy of the
technique, we use the variogram function for computing the period of
the self-images since noise is highly reduced. To check the technique,
we measure two lenses, one convergent and one divergent, with
nominal focal lengths +100 mm and −100 mm respectively. The
uncertainty given by the manufacturer for both lenses is 1% and we
obtain an uncertainty of approximately 0.1%, one order of magnitude
lesser.
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2. Analytical approach

Let us consider the set-up shown in Fig. 1. It consists of a well-
collimated light beam of wavelength λ, described by U z U e( ) = ikz

0 that
impinges an amplitude Ronchi diffraction grating, DG, with well-
known period p. The transmittance of the grating can be expressed
as its Fourier expansion series as

∑t x a e( ) = ,
(1)n

n
iqnx0

where x0 is the transversal coordinate at the grating plane, n are integer
numbers, ( )a τsinc nπτ=n are the Fourier coefficients of the grating

[15], τ is the fill factor of the grating, and q π p= 2 / . When the grating is
illuminated by a plane wave, it produces self-images at the near field
that consist of exact replicas of the intensity distribution of the grating
[16,17], that appear at multiples of the so-called Talbot distance,
z p λ= 2 /T

2 . The propagated field after the grating can be calculated by
using the Fresnel approach resulting in
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where z is the distance from the grating to the observation plane. After,
light propagates to the lens with unknown focal length f ′. Considering
thin lens approximation, the transmittance of the lens centered at the
optical axis in Fresnel regime is given by

L ξ e( ) = , (3)ik ξ
f− 2 ′
2

where k π λ= 2 / . We use again Fresnel approach to propagate the
optical field from the lens forward resulting in
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where ξ is the transversal coordinate at the lens principal plane, z is
the distance from the front principal plane of the lens to the
observation plane, and x is the transversal coordinate at the
observation plane. This integral is easily solved considering
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The intensity distribution is easily obtained as

( )I x z U x z U x z, = ( , ) *( , )2 2 , where * denotes complex conjugated,
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where I0 includes all constants that do not depend on the distance z.
The first exponential factor is related to the period of the self-images,
which depends on the distance, z, from the principal plane as
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′
.

(7)

This dependence is linear and allows us to identify two points that
correspond to the front focal plane, p′ = 0, and the front principal
plane of the lens, p p′ = .

We show in Fig. 2 an example of intensity given by Eq. (6) with a
collimated beam of wavelength λ = 655 mm, an amplitude diffraction
Ronchi grating of period p=50 μm and a lens of focal length
f ′ = 30 mm. As can be observed, Talbot self-images converge to the
focal plane. It is important to notice that the period of the self-images
must be calculated under paraxial approximation since the lens also
curves the self-images far from the optical axis in a similar way to that
is shown in [18,19]. Theoretically, the period has a linear dependence
with z, p az b′ = + . Then, after measuring the period of the fringes at
each plane and calculating its linear dependence with z, the focal
length, defined as the distance between the front principal plane and
the focal plane, is obtained as

f p
a

′ = − . (8)

The uncertainty in the focal length determination is given by

( ) ( )f a p p a aΔ ′ = 1/ Δ + / Δ2 2 2 2 4 2. The period of commercial gratings is

given with manufacture errors around 3 nm/m. Since we are measur-
ing in a range of a few millimeters of the grating, we can consider the
period of the grating well known and therefore pΔ results negligible.
Then, the uncertainty of the focal length is given by the uncertainty in
the slope of the fitting of the measured periods [20]. At the end, the
error in the focal length comes from errors committed in measuring the
period of the fringes, p′, and the corresponding distance z. The period
of the fringes can be affected by misalignments of the optical system.
Nevertheless, it can be calibrated previously since the period of the
grating is well known. We can correct misalignments, simply measur-
ing the period of the self-images without the lens. When the period of

Fig. 1. Scheme of the proposed set-up for a convergent lens – similar for a divergent
lens. DG is the diffraction grating,H, H′ are the principal planes of the lens, F′ is the front
focal plane, and f ′ is the front focal length.

Fig. 2. Analytical near field intensity obtained with Eq. (6) by illuminating a Ronchi
diffraction grating of period p=50 μm and a convergent lens of focal length f ′ = 30 mm
with a collimated beam of wavelength λ = 655 nm .
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