
The Journal of Systems and Software 138 (2018) 1–18

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An input-centric performance model for computational offloading

of mobile applications

Adam Rehn

∗, Jason Holdsworth , John Hamilton , Singwhat Tee

James Cook University, 14-88 McGregor Road Smithfield, Cairns, Queensland, Australia

a r t i c l e i n f o

Article history:

Received 23 November 2016

Revised 13 June 2017

Accepted 11 December 2017

Available online 14 December 2017

Keywords:

Timing model

Symbolic execution

Computational offloading

a b s t r a c t

Computational offloading frameworks are a widely-researched technology for optimising mobile appli-

cations through the use of cloud resources. Existing frameworks fail to fully account for the effect of

input data characteristics on application behaviour. Comprehensive timing models exist in the literature,

but feature information requirements and performance overheads that preclude use on mobile devices.

In this paper, we propose a conceptual model for an input-centric view of application performance. Our

proposed model simplifies the existing count-and-weights and pipeline timing models to significantly

reduce their information and processing requirements, facilitating use on resource-constrained mobile

devices. Our proposed model also utilises symbolic execution techniques to account for the effects of ap-

plication input data characteristics. Validation with both synthetic and real device datasets demonstrates

that our model provides an extremely accurate approximation of the count-and-weights model. Results

demonstrate the predictive power of our model for linear execution paths with no loops or recursion. Fur-

ther work with improved symbolic execution techniques may look to expand application of our proposed

model to real-world use cases. The proposed input-centric approach provides a promising foundation for

incorporating a deeper level of application-specific knowledge into computational offloading framework

cost models, with the potential to contribute to higher-quality offloading decisions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Mobile devices and cloud computing are technologies whose

prominence continues to grow. The confluence of these technolo-

gies represents an area of substantial interest. One common way

that mobile devices can utilise the power of cloud computing re-

sources is through the use of computational offloading frameworks

(Fernando et al., 2013). Offloading frameworks automate the pro-

cess of leveraging cloud compute resources to perform the process-

ing of application tasks. Offloading is performed adaptively, using

information about the application and device state to optimise per-

formance and resource usage (Kumar et al., 2013).

The behaviour of an application can be influenced by its in-

put data in ways that are of interest when performing computa-

tional offloading. As an example, consider a function that parses

data that has been read from an input file. The function first parses

the header fields of the hypothetical data format, which contains a

flag specifying if the data is compressed, and another flag spec-

∗ Corresponding author.

E-mail addresses: adam.rehn@jcu.edu.au , adam.rehn@my.jcu.edu.au (A. Rehn),

jason.holdsworth@jcu.edu.au (J. Holdsworth), john.hamilton@jcu.edu.au (J. Hamil-

ton), singwhat.tee@jcu.edu.au (S. Tee).

ifying if the data is encrypted. The execution paths through the

function that include decompression and decryption will be more

computationally expensive than the remaining paths that do not.

In the case of input data that is not compressed or encrypted, the

benefits of offloading the function to a remote server may be out-

weighed by the costs of transmitting the input and output data

over the network. In the case of data that is both compressed and

encrypted, offloading the computation may provide a performance

benefit that far outweighs the costs of data transmission. The of-

floading decision can only discern between these two cases if the

computational offloading is aware of the influence that the input

data’s header fields have on the function’s behaviour.

Existing computational offloading frameworks rarely account

for the full influence of an application’s input data on its behaviour.

Most existing frameworks focus solely on the size of input data, or

track input influence temporally through the use of history-based

profiles (Fernando et al., 2013; Kumar et al., 2013; Lewis and Lago,

2015). Very few offloading frameworks directly account for the in-

fluence of arbitrary input characteristics (Wang and Li, 2004; Shi

et al., 2014; Gao et al., 2014). These characteristics could include

the presence or absence of boolean or bitwise flags, ranges that

parameter values fall into, or any arbitrary features of the appli-

cation’s input data that are acted upon by the application’s code

https://doi.org/10.1016/j.jss.2017.12.010

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.12.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.12.010&domain=pdf
mailto:adam.rehn@jcu.edu.au
mailto:adam.rehn@my.jcu.edu.au
mailto:jason.holdsworth@jcu.edu.au
mailto:john.hamilton@jcu.edu.au
mailto:singwhat.tee@jcu.edu.au
https://doi.org/10.1016/j.jss.2017.12.010

2 A. Rehn et al. / The Journal of Systems and Software 138 (2018) 1–18

(Gao et al., 2014; Wang and Li, 2004), including abstract char-

acteristics whose relationship to application behaviour may not

be immediately obvious. The relationship between arbitrary input

characteristics and execution behaviour represents a deep level of

application-specific knowledge. The utilisation of this knowledge

presents an opportunity for improving the decisions made by of-

floading frameworks. In particular, predictions of application per-

formance may become far more accurate when produced by a

model that takes the nuances of execution behaviour into account

(Wilhelm et al., 2008).

As we demonstrate in Section 2.3 , existing models of appli-

cation performance are often designed for offline use, and are

poorly suited to the online prediction context of computational of-

floading. Additionally, many of these models feature information

requirements or performance overheads that make their use on

resource-constrained mobile devices impractical. To improve the

use of application-specific knowledge by computational offloading

frameworks, a performance model is needed that takes execution

behaviour into account whilst remaining efficient enough for use

on mobile devices.

In this paper, we propose a conceptual model for an input-

centric view of application performance. The proposed model sim-

plifies the knowledge represented by existing models in order to

significantly reduce information requirements and runtime over-

heads. The model also utilises symbolic execution techniques to

take into account the relationship between arbitrary input char-

acteristics and execution behaviour. Although further advances in

symbolic execution are necessary before our proposed model can

be applied to real-world applications, validation of our model on

controlled test cases in Section 5 suggests that it provides a foun-

dation for making efficient and accurate performance predictions

at runtime on resource-constrained mobile devices. Once inte-

grated into a computational offloading framework, these perfor-

mance predictions could then contribute to high-quality offloading

decisions.

Our proposed performance model focuses purely on the met-

ric of execution time. Other resource consumption metrics such

as energy usage or network transfer costs sit alongside execution

time in a computational offloading framework’s cost model. Mea-

surement of these complementary metrics, and integration of the

generated predictions into a computational offloading framework’s

decision-making processes, are outside the scope of this paper and

are left as future work to be completed when the prerequisite ad-

vances in symbolic execution techniques are achieved.

The contributions of this research are as follows:

• We describe the limitations of existing performance predic-

tion models, and identify the characteristics that make a model

suitable for adaptation to a mobile device context. Based on

these characteristics, we identify which existing models are

best suited to such adaptation.
• We present a new conceptual model for predicting applica-

tion performance in an online prediction context. The proposed

model draws from existing performance models and simplifies

them, in order to provide a cost-effective approximation of the

represented information.
• We propose a language-agnostic and platform-agnostic tooling

pipeline that can be used to implement our input-centric per-

formance model for any programming language and any mobile

device platform. Using this tooling pipeline, we describe the de-

sign and implementation of a prototype of the model that tar-

gets the C ++ programming language and the Apple iOS mobile

platform.
• We validate the accuracy of our model for code with individ-

ual execution paths, with respect to the information that it ap-

proximates. Validation results demonstrate that the approxima-

tion is extremely accurate, both on synthetic datasets and when

used with real mobile devices.
• We then validate the predictive power of the model for code

with multiple execution paths, running on consumer mobile

devices. In addition, we define a heuristic to measure the suit-

ability of a given piece of code for prediction with our model,

and examine the influence of the suitability value on the accu-

racy of the generated predictions.

The rest of this paper is structured as follows. First, we ex-

plore the factors that influence application performance, and ex-

amine the state of existing performance prediction models. Then,

we present our proposed model and describe the method by which

it simplifies the information represented by existing models. We

then describe the language- and platform-agnostic tooling pipeline,

and discuss the implementation of a software prototype using this

pipeline. Next, we validate how well our proposed model approx-

imates the existing model that it simplifies for code with individ-

ual execution paths, by comparing the results of the two models

on both synthetic datasets and benchmark results from real mo-

bile hardware. We describe the experimental methodology used to

validate the predictive power of the model for code with multiple

execution paths, and present the results of this validation. Finally,

we discuss the implications of this research and directions for fu-

ture work.

2. Background

2.1. Application profiling

Computational offloading frameworks perform two key func-

tions. The first is to manage the migration of an application’s

execution between the local mobile device and a remote server

(Shiraz et al., 2015). The second function is to perform cost-

benefit analysis to make optimal offloading decisions that sat-

isfy criteria that have been specified by either the developer or

the user (Fernando et al., 2013; Kovachev et al., 2011). This cost-

benefit analysis is commonly formulated as an optimisation prob-

lem, which aims to satisfy a set of goals within a given set of

constraints. In order to predict the cost of performing offloading,

frameworks commonly monitor resources on the local device in

addition to the behaviour of the application being offloaded. Fig. 1

depicts the common components of the computational offloading

cost model.

The component of the offloading cost model that we focus on is

application profiling. Application profiling seeks to characterise the

performance and resource usage of an application. Profiled char-

acteristics often include execution time, battery usage, and mem-

ory footprint (Fernando et al., 2013). Maximising performance and

minimising energy consumption are common offloading goals. An

application’s memory footprint determines the quantity of data

that must be transmitted over the network when performing mi-

gration between the device and the remote server (Chun et al.,

2011). Minimising data transfer is another common goal when

making offloading decisions. It is the performance characteristic of

application profiling that we focus on in our research.

Application performance is influenced by numerous factors,

including characteristics of the application itself and the oper-

ating system and hardware that the application is running on

(Wang et al., 2002). Characteristics of the application itself can in-

clude instruction count, basic blocks and execution paths, input

data, and system calls (Reistad and Gifford, 1994; Wilhelm et al.,

2008). Factors related to the operating system include context

switches and pre-emptive scheduling (De et al., 2007), OS clock

ticks and timers, system daemons (Tsafrir et al., 2005), Transla-

tion Lookaside Buffer (TLB) mosses, page faults and memory swap-

https://isiarticles.com/article/153247

