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Abstract

We study computational behavior of a mesoscopic model describing temperature/external magnetic field-driven evolution of mag-
netization. Due to nonconvex anisotropy energy describing magnetic properties of a body, magnetization can develop fast spatial
oscillations creating complicated microstructures. These microstructures are encoded in Young measures, their first moments then
identify macroscopic magnetization. Our model assumes that changes of magnetization can contribute to dissipation and, conse-
quently, to variations of the body temperature affecting the length of magnetization vectors. In the ferromagnetic state, minima of
the anisotropic energy density depend on temperature and they tend to zero as we approach the so-called Curie temperature. This
brings the specimen to a paramagnetic state. Such a thermo-magnetic model is fully discretized and tested on two-dimensional ex-
amples. Computational results qualitatively agree with experimental observations. The own MATLAB code used in our simulations
is available for download.
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1. Introduction

In the isothermal situation, the configuration of a rigid ferromagnetic body occupying a bounded domain Ω ⊂ Rd

is usually described by a magnetization m : Ω → Rd which denotes density of magnetic spins and which vanishes if
the temperature θ is above the so-called Curie temperature θc. Brown [5] developed a theory called “micromagnetics”
relying on the assumption that equilibrium states of saturated ferromagnets are minima of an energy functional. This
variational theory is also capable of predictions of formation of domain microstructures. We refer e.g. to [15] for a
survey on the topic. Starting from a microscopic description of the magnetic energy we will continue to a mesoscopic
level which is convenient for analysis of magnetic microstructures.

On microscopic level, the magnetic Gibbs energy consists of several contributions, namely an anisotropy energy∫
Ω
ψ(m, θ) dx, where ψ is the-so called anisotropy energy density describing crystallographic properties of the material,

an exchange energy 1
2

∫
Ω
ε|∇m(x)|2dx penalizing spatial changes of the magnetization, the non-local magnetostatic

energy 1
2

∫
Rdµ0|∇um(x)|2dx, work done by an external magnetic field h which reads −

∫
Ω

h(x)·m(x) dx, and a calorimetric
term

∫
Ω
ψ0 dx. The anisotropic energy density depends on the material properties and defines the so-called easy axes

of the material, i.e., lines along which the smallest external field is needed to magnetize fully the specimen. There
are three types of anisotropy: uniaxial, triaxial, and cubic. Furthermore, ψ is supposed to be a nonnegative function,
even in its first variable, i.e., ±m are assigned the same anisotropic energy. In the magnetostatic energy, um is the
magnetostatic potential related to m by the Poisson problem div(µ0∇um−χΩm) = 0 arising from Maxwell equations.
Here χΩ : Rd → {0, 1} denotes the characteristic function of Ω and µ0 = 4π×10−7N/A2 is the permeability of vacuum.
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