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a b s t r a c t

This paper will introduce the use of the approximate Bayesian computation (ABC) algo-
rithm for model selection and parameter estimation in structural dynamics. ABC is a
likelihood-free method typically used when the likelihood function is either intractable
or cannot be approached in a closed form. To circumvent the evaluation of the likelihood
function, simulation from a forward model is at the core of the ABC algorithm. The algo-
rithm offers the possibility to use different metrics and summary statistics representative
of the data to carry out Bayesian inference. The efficacy of the algorithm in structural
dynamics is demonstrated through three different illustrative examples of nonlinear sys-
tem identification: cubic and cubic-quintic models, the Bouc-Wen model and the Duffing
oscillator. The obtained results suggest that ABC is a promising alternative to deal with
model selection and parameter estimation issues, specifically for systems with complex
behaviours.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In many areas of engineering and science, researchers or engineers are dealing with model selection and comparison
issues, in particular when several competing models are consistent with the selection criteria and could potentially explain
the data reasonably well. In most cases, selecting the most likely model among a set of competing models may be quite chal-
lenging, often requiring a deep understanding of the physics involved. Several methods have been proposed in the literature,
and arguably the most popular currently is the Bayesian approach. During the last two decades, the Bayesian approach has
been successfully implemented in many areas to deal with model selection and parameter estimation issues. Compared with
other statistical methods, Bayesian theory provides a comprehensive and coherent framework, and a generally applicable
way to make inference about models from data. The reader can refer to the following references [1–6] and the references
therein, where many varied examples illustrating the use of the Bayesian method are investigated. In the Bayesian paradigm,
the best model is the one that satisfies the parsimony principle, which means the right balance between complexity of the
model and goodness-of-fit. Given a number of potential models, and one or more data sets, model selection should identify
the model structure and the set of parameters that may explain the data best, while simultaneously penalising overly-
complex models. Different methods have been proposed in the literature for model selection based on the Bayes theory;
the most popular is reversible-jump Markov chain Monte Carlo (RJ-MCMC) [7]. However, the implementation of the
RJ-MCMC algorithm is quite challenging. This is because when one deals with a large number of models with different
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dimensionalities, the algorithm needs to define a so-called ‘dimension-matching’ mapping law which requires additional
computation. The reader is referred to [7] for details. Bayes factors [8] have been considered for a long time as the standard
tools for performing Bayesian model comparison; however, these provide only a relative comparison of competing models,
not the absolute values of their posterior probabilities.

Sandhu et al. [5] have proposed the use of the Metropolis-Hastings (MH) MCMC simulation and nonlinear filtering. Par-
ticle filters as the sequential importance sampling/resampling (SIS/SIR) [9] could be used to make model selection as shown
in [10]. More traditional statistical methods such as the Akaike Information Criterion (IC), the Bayesian IC or the deviance IC
have been extensively used and investigated in the literature also [11–14]. Essentially, the evaluation of those metrics is
based on the maximum likelihood estimate and a penalty term to penalise complex models (complexity is measured usually
by the number of parameters in the model). In those methods, the marginal likelihood estimation is undertaken for each
model separately, and then these results are used to compute the plausibility of each model. This may be a problem, typically
when one deals with a large number of competing models composed of a large number of parameters. Moreover, in the sta-
tistical methods based on the ICs, the likelihood is supposed to be very peaked, however, in problems with different types of
nonlinearities, the density may be non-Gaussian (e.g., bimodal, multimodal or heavily skewed). In such cases, the ICs cannot
be used to compare the candidate models, and this limits their widespread use. Another alternative to deal with model selec-
tion and parameter estimation is to use the nested sampling (NS) method proposed by Skilling [15,16]. The algorithm works
by transforming the multidimensional parameter space integral into a one dimensional integral where classical numerical
approximation techniques to estimate the area under a function can be applied. The algorithm has been successfully applied
in various research areas [17,18].

The diversity of the methodologies proposed in the literature reflects the complexity of the model selection task; more-
over, it shows that there is no universal method that can be used in any circumstances. The choice of the suitable method
depends mainly on the available data to conduct Bayesian inference. In this paper, the use of the approximate Bayesian com-
putation (ABC) algorithm is introduced as a promising alternative to deal with model selection and parameter estimation.
Compared with the methods above, the ABC is more straightforward and general in the sense that there is no need to eval-
uate any extra criterion to discriminate between candidate models, and the inference can be performed through any suitable
metric to assess the similarity between the observed and simulated data, circumventing the problem of an intractable like-
lihood function and the Gaussianity assumption which cannot not always be guaranteed. Moreover, in structural dynamics
with complex nonlinearity types, it is often the case that the hypothesis of Gaussianity is not guaranteed. Another major
advantage offered by the ABC algorithm is its independence of the dimensionality of the competing models; ABC jumps
between the different model spaces without the need of any mapping function to be defined, which is a major benefit in
dealing with larger numbers of models. In practice, the ABC algorithm compares the competing models simultaneously,
and eliminates progressively the least likely models, to converge to the most plausible one(s). The widespread use of ABC
in several fields, and its efficiency to deal with model selection and parameter estimation, simultaneously motivated the cur-
rent authors to investigate more the capability of the ABC to infer complex nonlinear systems in structural dynamics. The
algorithm shows some attractive properties, including its flexibility to use different kinds of metrics to make system infer-
ence and its ability to explore both model and parameter spaces efficiently. The flexibility offered by the ABC algorithm is of
paramount importance, as in some circumstances, the likelihood function cannot be analytically formulated or even be
approached using approximate methods. Therefore, ABC by its flexibility makes inference possible for many challenging
problems.

During the last decade, the ABC algorithm has been applied in many areas for both levels of inference (parameter and
model): genetics [19], biology [20,21] and psychology [22]. The rapid developments and continuous improvements of the
ABC algorithm attracted many other areas, and recently it has been introduced in structural dynamics by the authors for
model selection [23] and parameter estimation in [24]. In [24], the authors show that the combination of the ABC principle
with the subset simulation concept [25], introduced to estimate rare events, decreases the computational time and provides
the same precision as other variants of the ABC algorithm proposed in the literature such as ABC sequential Monte Carlo
(SMC) and ABC-MCMC [26]. In the present work, a more extensive application of ABC-SMC as an efficient tool for model
selection and parameter estimation in structural dynamics is presented. ABC appears to be a promising alternative for prac-
titioners in structural dynamics to overcome the inference problem of systems with complex behaviours which may undergo
bifurcations and/or chaos.

Furthermore, ABC offers the possibility to manage larger datasets and a higher number of competing models with differ-
ent dimensionalities, circumventing the limitation of RJ-MCMC. Besides the major advantages mentioned so far, the simplic-
ity of the ABC method and its capability of extending the Bayesian framework to any computer simulation has exponentially
increased its popularity. It is worth mentioning that this algorithm already takes into account the parsimony requirement
because complex models with larger number of parameters will generate wider posterior distributions. As a result, models
with more parameters will be more times below the ABC tolerance threshold, thus promoting simpler models. This property
will be investigated in the illustrative examples presented in this work, by considering several models with different degrees
of complexity and analysing the behaviour of the algorithm through the inference process.

The paper starts out with an introduction to the ABC algorithm and the selection of the different hyperparameters
required for its implementation. Then, in Section 3, the application of the ABC algorithm is illustrated and investigated
through three illustrative examples using simulated data and forms the core of the paper. Finally, the paper is closed with
some conclusions about the strengths of the ABC method and future work.
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