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a b s t r a c t 

Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of 

gradient-based optimization of musculoskeletal models is hindered by computationally expensive and 

non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously 

speeds up computation and removes sources of non-smoothness from muscle force optimizations using 

a combination of parallelization and surrogate modeling, with special emphasis on a novel method for 

modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently 

introduce elastic joint contact models within static and dynamic optimizations of human motion. We 

demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis- 

leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for 

a static optimization time frame and on the order of minutes for an entire dynamic optimization. The 

presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation 

interventions will affect post-treatment joint and muscle function. 

© 2018 Published by Elsevier Ltd on behalf of IPEM. 

1. Introduction 

Modeling and simulation of muscle and joint contact forces has 

the potential to improve patient care for movement-related dis- 

orders. Reliable concurrent estimation of these forces along with 

joint kinematics could be used to predict joint replacement per- 

formance, surgical outcomes, and rehabilitation strategies for a va- 

riety of musculoskeletal disorders. Most studies that predict mus- 

cle and joint contact forces model biological joints as constraint- 

based engineering joints. In those studies, muscle and joint con- 

tact forces are calculated by following a two-step process: (1) Mus- 

cle forces are computed using a multibody dynamic skeletal model 

and optimization, and then (2) Associated joint contact forces are 

calculated from knowledge of the muscle forces and joint reaction 

forces from inverse dynamics [1–4] . The downsides of this two- 

step approach are that it can produce erroneous muscle force pre- 

dictions [5] and cannot predict secondary kinematics (e.g., knee 

anterior-posterior translation) or ligament forces for the joints be- 

ing modeled. 
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For this reason, researchers have sought to develop more com- 

plex modeling methods that allow concurrent estimation of mus- 

cle and joint contact forces. Such methods replace constraint-based 

engineering joints with deformable joint surfaces whose interac- 

tions are controlled primarily by muscle and ligament forces. Lin 

et al. (2010) predicted muscle and knee contact forces simultane- 

ously using a two-level optimization method where the outer level 

guessed the muscle force distribution and the inner-level found the 

corresponding static configuration of the joint using surrogate con- 

tact models [6] . These models approximated the input-output char- 

acteristics of elastic foundation contact models. Thelen et al. (2014) 

and Smith et al. (2016) used a modified version of computed mus- 

cle control (CMC), where a controller tracked desired accelerations 

while joint translational accelerations were assumed to be zero 

and an elastic foundation was used to model contact [7,8] . Marra 

et al. (2015) and Andersen et al. (2011, 2017) used force-dependent 

kinematics (FDK), where secondary joint coordinates were added 

as design variables within a static optimization [9–11] . With this 

approach, the velocities and accelerations of the secondary coordi- 

nates were assumed to be zero and an elastic foundation was used 

to model contact. In one recent study a surrogate contact model 

was used to speed up FDK computation [12] . Guess et al. (2014) 
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avoided optimization and instead used feedback control with de- 

formable contact models for the foot and joint of interest [13] . 

Moissenet et al. (2014) performed concurrent computation of mus- 

cle and contact forces within an optimization by using simplified 

joint models and Lagrange multipliers [14] . 

Unfortunately, developing optimization-based predictions of 

motion where muscle and joint contact forces are solved con- 

currently remains a difficult and computationally slow task. The 

primary reasons are the difficulties encountered when apply- 

ing gradient-based optimization to musculoskeletal models with 

computationally costly and non-smooth (discontinuous or non- 

differentiable) contact models as well as non-smooth muscu- 

loskeletal geometry models (e.g., muscle-tendon lengths and 

moment arms). Contact models are computationally costly be- 

cause they involve computing distances between complex three- 

dimensional surfaces and are non-smooth when various regions of 

the contacting surfaces come in to and out of contact. Moreover, 

contact forces and moments are sensitive to small pose variations 

that affect normal contact force, resulting in badly scaled gradi- 

ents when pose parameters defining joint position and orienta- 

tion are used as design variables [15] . Non-smoothness in muscle- 

tendon lengths and muscle moment arms can arise when mus- 

cles are modeled geometrically using sequences of line segments 

whose paths are determined by either wrapping objects or via 

points added or removed as a function of spanned joint angles 

[16–18] . Non-smoothness can be introduced when a line segment 

enters contact with a wrapping object, passes through a wrapping 

surface, snaps to the other side of a wrapping surface, or is re- 

routed by turning on or off a via point. 

In this study, we propose a novel framework for performing 

concurrent muscle, joint contact, and joint kinematic simulations 

via optimization. We remove the non-smoothness problem while 

increasing computational efficiency by: (1) Generating surrogate 

models of deformable joint contact from finite element models and 

efficiently implementing them within optimizations using a novel 

approach, (2) Generating surrogate models of musculoskeletal ge- 

ometry and using a custom Hill-type muscle-tendon model with 

rigid tendon, and (3) Parallelizing multibody dynamic model eval- 

uations. The method results in the computationally efficient com- 

putation of non-linear constraints that are incorporated into static 

and dynamic optimizations of muscle and contact forces. In addi- 

tion to describing the overall approach with special focus on sur- 

rogate contact modeling, we provide two illustrative examples to 

demonstrate implementation of the approach to knee contact and 

leg muscle force prediction. In the first example, we use a static 

optimization approach based on the existing FDK framework which 

we will call modified FDK (mod-FDK). In the second example, we 

formulate the same problem as a dynamic optimization and solve 

it using direct collocation. 

2. Methods 

2.1. Overview 

The goal of our framework ( Fig. 1 ) is to remove non-smoothness 

and computational expense from optimizations that predict muscle 

forces, joint contact forces, and joint motions simultaneously. We 

achieve this goal using a combination of surrogate modeling and 

parallelization. Surrogate modeling generates smooth and compu- 

tationally inexpensive approximations of more computationally ex- 

pensive models, while parallelization splits part of the computa- 

tional load among multiple processors. 

2.1.1. Key concepts 

Before continuing with the methods, we first introduce several 

key concepts. The first concept is that of primary and secondary 

Fig. 1. Summary of computational framework for speeding up and removing non- 

smoothness from musculoskeletal optimization problems with joint contact. In the 

initial stage, joint contact is modelled using finite elements, muscle-tendon geome- 

try using path actuators, and the simulator interface is the OpenSim API for Matlab. 

Three custom tools were developed which allowed us to obtain surrogate models 

of joint contact and musculoskeletal geometry, as well as an efficient simulation 

interface for deployment in the optimization stage. 

generalized coordinates. Secondary generalized coordinates are as- 

sumed to maintain a quasi-static equilibrium between muscle, lig- 

ament, and contact forces, disregarding the effect of inertial forces. 

The time derivatives of the secondary generalized coordinates are 

always assumed to be zero in our approach. Primary generalized 

coordinates are assumed to be affected by inertial forces, and thus 

their time derivatives are not assumed to be zero. 

Another important concept is that of static and dynamic opti- 

mization. A static optimization performs a minimization at a spec- 

ified time point, while a dynamic optimization performs a min- 

imization over some period of time. Dynamic optimization may 

also be known as trajectory optimization or optimal control. While 

a static optimization minimizes a cost function and is subjected 

to equality and/or inequality constraints, a dynamic optimizations 

minimizes a cost functional and is subjected to path constraints 

and possibly end-point constraints, though other types of con- 

straints can be incorporated as well. 

For contact modeling purposes, we also define the concept of 

a fixed body and a moving body. Since contact forces depend on 

the relative orientation of one body with respect to another, we 

define the fixed body as the contacting body that is conceptually 

fixed while the moving body is thought of as being translated and 

rotated by six pose parameters (3 translations and 3 rotations) rel- 

ative to the fixed body. 

A final important concept related to contact modeling is that of 

sensitive directions. A sensitive direction is defined as a degree of 

freedom (DOF), either translational or rotational, which when per- 

turbed causes relatively large changes in the contact loads (forces 

and moments resulting from contact) associated with that DOF. 

The concept of sensitive directions is intimately related to surro- 

gate contact model creation and optimization formulation. 

2.1.2. About this framework 

In inverse dynamics-based muscle force optimizations, the goal 

is to find the muscle activations (design variables) that mini- 

mize some assumed measure (e.g., fatigue or energy) while the 

joint forces and moments calculated via inverse dynamics are con- 

strained to be balanced by a combination of muscle, ligament, and 

contact forces. The focus of our framework is on how to efficiently 

compute smooth non-linear constraints, representing the balancing 

of the net joint forces and moments. In the first part of the meth- 

ods, we explain the general approach required to compute these 
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