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Abstract: This paper presents a model order reduction method via Krylov subspace projection,
for applications in the field of computational electromagnetics (CEM). The approach results
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examples related to the reduction of finite element method models are presented to validate this
methodology, both in the 2D and in the 3D case.
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1. INTRODUCTION

In the last decade, computational modeling and simulation
has grown as a proper discipline and can be nowadays con-
sidered an approach for both the analysis and the synthesis
of physical systems that complements theory and experi-
ment. Computer simulations are now performed routinely
for several kinds of processes, and, in particular, numerical
simulation plays a fundamental role in the study of the
complex dynamical phenomena in Electromagnetism (see
for example, Lowther (2013)).

In this framework, the model description often comes
out from a Finite Element Method (FEM) formulation
either in 2D or 3D (Demenko et al. (2014); Sato and
Igarashi (2013)), where the input/output/state variables
describe the physical relations in the mesh elements of
the geometrical discretization of the problem domain (e.g.
active and passive structures). The high complexity and
level of detail of such a description might be necessary
to ensure a certain precision but this directly translates
into a high-dimensional state-space representation that
can be numerically difficult to treat, because of a high
computational and memory cost.

To cope with this problem, the fundamental idea is to de-
rive models of reduced order, capable of giving an accurate
description of the real system and at the same time allow-
ing to simplify the design of the controller (Kumar and
Nagar (2014); Gugercin and Antoulas (2004); Cenedese
et al. (2016); Willcox and Peraire (2002); Benner et al.
(2015)). Following this procedure, the system behavior can
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be described only considering a small group of dominant
states, and the main issue is to identify this set to obtain a
lower order model that matches (or better approximates)
the full order model behavior.

This paper presents a Model Order Reduction (MOR)
method via Krylov subspace projection, particularly suit-
able for strong order reduction of FEM models. The ap-
proach is based on the Laurent series expansion of the
transfer function of the full order model Σ, to obtain a
reduced order model Σq that matches the first q expan-
sion coefficients of the original transfer function, so-called
moments (Salimbahrami and Lohmann (2006)). In order
to avoid numerical problem when reducing Σ to Σq the
classical Arnoldi algorithm is used. The features of this
MOR procedure in terms of system behavior are discussed
both for Single Input Single Output (SISO) and Multi
Input Multi Output (MIMO) systems, and with relevant
examples related to 2D and 3D FEM models.

2. PRINCIPLES OF MOR

2.1 System representation

Let Σ(A,B,C,D) be a n-th order continuous-time,
MIMO, linear, time-invariant state space model with m
inputs and p outputs:{

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

with state x(t) ∈ Rn, input vector u(t) ∈ Rm, output
vector y(t) ∈ Rp, and where E ∈ Rn×n, A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n, D ∈ Rp×m.
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The transfer function of the system is:

H(s) = C(sE−A)−1B+D (2)

relating the inputs to the outputs by Y(s) = H(s)U(s).

If the number of states n is large (from hundreds to tens
of thousands as in FEM models), a computer simulation
of the system can be costly (and often unfeasible) in terms
of CPU time and memory used. Therefore, when dealing
with such high-order models, it is mandatory to try and
derive approximated models Σq of order q � n:

{
Eqẋq(t) = Aqxq(t) +Bqu(t)

yq(t) = Cqxq(t) +Du(t)
(3)

where Eq ∈ Rq×q, Aq ∈ Rq×q, Bq ∈ Rq×m, Cq ∈ Rp×q.
In a MOR by projection the system matrices take the form:

Eq = WTEV Aq = WTAV (4)

Bq = WTB Cq = CV (5)

2.2 Moments of the transfer function

The reduction of Σ to Σq is expressed as a relationship
between the transfer function of the full order system and
that of the reduced one. Set s = σ + si and expand (2) in
Laurent series around si to obtain:

(sE−A)−1 = [σE+ (siE−A)]−1 (6)

= [σ(siE−A)−1E+ I]−1(siE−A)−1 (7)

=
∞∑
k=0

(−1)kσk[(siE−A)−1E]k(siE−A)−1

(8)

so (2) can be written as:

H(σ) =
∞∑
k=0

Mk(si)σ
k (9)

the term Mk is a p ×m matrix, and is called moment of
order k of the transfer function:

Mk(si) = (−1)kC[(siE−A)−1E]k(siE−A)−1B (10)

This means that, using this technique, we can choose
both the accuracy (with a suitable dimension q) and the
frequency of the transfer function where moment matching
is required. For the most common case of steady state
matching (si = 0), we get:

Mk(0) = (−1)kC[−A−1E]k(−A)−1B (11)

= −C[A−1E]kA−1B (12)

Then the q-order approximated transfer function results:

Hq(σ) =

q∑
k=1

Mk(si)σ
k = Cq(σEq −Aq)

−1Bq (13)

This is a general result that can be obtained with a Laurent
expansion of the transfer function, and is not referred
to more specific reduction technique. Next section will
describe how to build the matrices of the reduced system
Σq.

3. STANDARD BLOCK KRYLOV SUBSPACES
METHOD

3.1 Block Krylov subspaces and properties

Let x = Vxq be a change of variable and the matrix W
a suitable matrix that will be described in the following
part of the section. With these positions, a reduced order
model can be found as:{

WTEqVẋq(t) = WTAqVxq(t) +WTBqu(t)

yq(t) = CqVxq(t) +Du(t)
(14)

and it can be proved that, if V, W are the basis of a block
Krylov subspace referred to the full order system Σ, the
moment matching up to the order q is reached.

The block Krylov subspace is defined as follows. Let F ∈
Rn×n, G ∈ Rn×m be two matrices, then the block Krylov
subspace Kq(F,G) is defined as

Kq(F,G) = colspan{G,FG,F2G, ...,Fq−1G} (15)

In particular, we choose the two matrices above such that

F = (siE−A)−1E G = (siE−A)−1B (16)

and we write the zero order moment

Mq,0 = −CqA
−1
q Bq = −CV(WTAqV)−1WTBq (17)

It can be proved that for a particular matrix V basis of
Kq1(A

−1E,A−1B) and W chosen such that Aq is non-
singular, the zero order moment of the reduced model mq,0

matches the moment of the full model m0.

The generalization of this result for a general order q is
summarized in the following theorems, which give an idea
about one of the main strength of this reduction technique:
namely, two choices of the matrices V, W are available
starting from two different Krylov subspaces Kq1, Kq2 that
depend on particular features of the input and output
spaces.

Theorem 1. If the matrixV used in (4) is a basis of Krylov
subspace Kq1((siE −A)−1E, (siE −A)−1B) with rank q
and and W is chosen such that the matrix Aq is non-
singular, then the first q/m moments (around si) of the
original and reduced order systems match.

Theorem 2. If the matrix W used in (4) is a basis of

Krylov subspace Kq2((siE−A)−TE, (siE−A)−TCT ) with
rank q and and V is chosen such that the matrix Aq is
non-singular, then the first q/p moments (around si) of
the original and reduced order systems match.

The proof of Theorem 1 (respectively 2) can be obtained by
writing moments (9) as linear combinations of the columns
of V (respectively W) basis of subspace Kq1 (respectively
Kq2). For further details see Salimbahrami and Lohmann
(2002). These theorems show that the presented approach
is able to solve MOR in a flexible way, meaning that we can
tackle different order reduction problems with the most
suitable subspace. In addition to this, it follows directly
from Theorems 1–2 that moment matching is obtained for
any basis of input or output Krylov subspaces used for
order reduction. Depending on the choice of V,W we will
say respectively input-Krylov and output-Krylov subspace.

Another important property can be shown by comparing
two different reduced models with V1, W1 and V2, W2,
both couple of matrices satisfying theorems 1, 2:
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