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Abstract

This paper deals with the analysis of the propagation of uncertainties in computational linear dynamics for linear viscoelastic com-

posite structures in the presence of uncertainties. In the frequency domain, the generalised damping matrix and the generalised

stiffness matrix of the stochastic computational reduced-order model are random frequency-dependent matrices. Due to the causal-

ity of the dynamical system, these two frequency-dependent random matrices are statistically dependent and their probabilistic

model involves a Hilbert transform. In this paper, a computational analysis of the propagation of uncertainties is presented for a

composite viscoelastic structure in the frequency range.

c� 2017 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the organizing committee of EURODYN 2017.

Keywords: Uncertainty quantification, Viscoelastic, Nonparametric probabilistic approach, Structural dynamics, Hilbert transform,

Kramers-Kronig relations, Reduced-order model

1. Introduction

In structural engineering, uncertainties have to be accounted for the design and the analysis of a structure using

computational models. In the computational models, the sources of uncertainties are due to the model-parameters

uncertainties, as well as the model uncertainties induced by modelling errors. In the probabilistic framework, uncer-

tainty quantification has extensively be developed in the last two decades (see for instance [1–3]).

The objective of this paper is to present the numerical analysis of an extension (recently proposed in [4–6]) of the

nonparametric probabilistic approach of uncertainties [7] in computational linear structural dynamics for viscoelas-

tic composite structures in the frequency-domain. In the framework of linear viscoelasticity (see for instance [8,9])

and in the frequency domain, the generalised damping matrix [D(ω)] and the generalised stiffness matrix [K(ω)] of

the reduced-order computational model depend on frequency ω. The nonparametric probabilistic approach of un-

certainties consists in modelling this two frequency-dependent generalised matrices by frequency-dependent random

∗ Corresponding author, Tel.: +33-1-60-95-7779 ; fax: +33-1-60-95-7799

E-mail address: christophe.desceliers@univ-paris-est.fr

1877-7058 c� 2017 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the organizing committee of EURODYN 2017.

Available online at www.sciencedirect.com

Procedia Engineering 00 (2017) 000–000
www.elsevier.com/locate/procedia

X International Conference on Structural Dynamics, EURODYN 2017

Model uncertainties in computational viscoelastic linear structural

dynamics

R. Capillona, C. Desceliersa,∗, C. Soizea
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matrices [D(ω)] and [K(ω)] respectively. However, as these two matrices come from a causal dynamical system,

the causality implies two compatibility equations, also known as the Kramers-Kronig relations [10,11], involving the

Hilbert transform [12]. A summary of the construction of the deterministic reduced-order computational model is pre-

sented in Section 2. Section 3 deals with the construction of the nonparametric probabilistic model using the Hilbert

transform. In Section 4 a numerical example is presented.

2. Computational model in linear viscoelasticity

2.1. Linear viscoelastic constitutive equation

Let Ω = Ωe ∪ Ωve be an open, connected, and bounded domain of R3, constituted of two parts Ωe and Ωve. The

first part Ωe is occupied by a purely elastic medium while the second part Ωve is occupied by a linear viscoelastic

medium. In a cartesian frame (e1, e2, e3), let x = (x1, x2, x3) be the position vector of any point in Ω. Let u(x, t) be

the displacement field defined on Ω. The linearised strain tensor is denoted by {εkh}hk and the Cauchy stress tensor

by {σi j}i j, with i, j, k, and h in {1, 2, 3}. The theory of linear viscoelasticity is used in order to obtain the constitutive

equation of the viscoelastic medium occupied by domain Ωve. For t ≤ 0, the system is assumed to be at rest. In the

time domain, the constitutive equation is then written as

σ(u(x, t)) =

∫ t

0

G(x, τ) : ε(u̇(x, t − τ))dτ , (1)

in which u̇ is the partial derivative of u with respect to t, where t �→ G(x, t) is the relaxation function defined on

[0 +∞[ with values in the fourth-order tensor that satisfies the usual symmetry properties. Function t �→ G(x, t) is

differentiable with respect to t on ]0,+∞[ and its partial time derivative t �→ {Ġi jkh(x, t)}i jkh is assumed to be integrable

on [0 ,+∞[. At time t = 0, the initial elasticity tensor G(x, 0) is positive definite. Consequently, Eq. (1) can be

rewritten as

σ(u(x, t)) = G(x, 0) : ε(u(x, t)) +

∫ +∞

−∞

g(x, τ) : ε(u(x, t − τ))dt , (2)

where fourth-order tensor g(x, t) is defined by g(x, t) = 0, if t < 0 and g(x, t) = Ġ(x, t) if t ≥ 0. Taking the Fourier

transform with respect to t of both sides of Eq. (2), and introducing the real part ĝR(x, ω) = ℜe{̂g(x, ω)} and the

imaginary part ĝI(x, ω) = ℑm{̂g(x, ω)}, the constitutive equation in the frequency domain can be written as

σ(̂u(x, ω)) = (a0(x) + a(x, ω) + iω b(x, ω)) : ε(̂u(x, ω)) , (3)

where a0(x) = G(x, 0) and where the components ai jkh(x, ω) and bi jkh(x, ω) of the fourth-order real tensors a(x, ω) and

b(x, ω) are the viscoelastic coefficients that are such that

a(x, ω) = ĝR(x, ω) , ω b(x, ω) = ĝI(x, ω) . (4)

Since g is a causal function of time, the real part ĝR and imaginary part ĝI of its Fourier transform ĝ are related

through a set of compatibility equations also known as the Kramers-Kronig relations [10,11]. These relations involve

the Hilbert transform [12] and are written as

ĝR(x, ω) =
1

π
p.v

∫ +∞

−∞

ĝI(x, ω′)

ω − ω′
dω′, ĝI(x, ω) = −

1

π
p.v

∫ +∞

−∞

ĝR(x, ω′)

ω − ω′
dω′, (5)

in which p.v denotes the Cauchy principal value. From Eqs. (4) and (5), the following relation between the viscoelastic

tensors a(x, ω) and b(x, ω) can then be deduced, for all ω > 0,

a(x, ω) =
ω

π
p.v

∫ +∞

−∞

b(x, ω′)

ω − ω′
dω′ . (6)
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