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Abstract

This paper deals with the analysis of the propagation of uncertainties in computational linear dynamics for linear viscoelastic com-
posite structures in the presence of uncertainties. In the frequency domain, the generalised damping matrix and the generalised
stiffness matrix of the stochastic computational reduced-order model are random frequency-dependent matrices. Due to the causal-
ity of the dynamical system, these two frequency-dependent random matrices are statistically dependent and their probabilistic
model involves a Hilbert transform. In this paper, a computational analysis of the propagation of uncertainties is presented for a
composite viscoelastic structure in the frequency range.
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1. Introduction

In structural engineering, uncertainties have to be accounted for the design and the analysis of a structure using
computational models. In the computational models, the sources of uncertainties are due to the model-parameters
uncertainties, as well as the model uncertainties induced by modelling errors. In the probabilistic framework, uncer-
tainty quantification has extensively be developed in the last two decades (see for instance [1-3]).

The objective of this paper is to present the numerical analysis of an extension (recently proposed in [4-6]) of the
nonparametric probabilistic approach of uncertainties [7] in computational linear structural dynamics for viscoelas-
tic composite structures in the frequency-domain. In the framework of linear viscoelasticity (see for instance [8,9])
and in the frequency domain, the generalised damping matrix [D(w)] and the generalised stiffness matrix [K(w)] of
the reduced-order computational model depend on frequency w. The nonparametric probabilistic approach of un-
certainties consists in modelling this two frequency-dependent generalised matrices by frequency-dependent random
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matrices [D(w)] and [K(w)] respectively. However, as these two matrices come from a causal dynamical system,
the causality implies two compatibility equations, also known as the Kramers-Kronig relations [10,11], involving the
Hilbert transform [12]. A summary of the construction of the deterministic reduced-order computational model is pre-
sented in Section 2. Section 3 deals with the construction of the nonparametric probabilistic model using the Hilbert
transform. In Section 4 a numerical example is presented.

2. Computational model in linear viscoelasticity
2.1. Linear viscoelastic constitutive equation

Let Q = Q, U Q,, be an open, connected, and bounded domain of R3, constituted of two parts Q, and Q,,. The
first part Q, is occupied by a purely elastic medium while the second part Q,, is occupied by a linear viscoelastic
medium. In a cartesian frame (ey, e;, e3), let x = (xy, x2, x3) be the position vector of any point in Q. Let u(x, 7) be
the displacement field defined on Q. The linearised strain tensor is denoted by {&}nx and the Cauchy stress tensor
by {c;}ij, with i, j, k, and & in {1, 2, 3}. The theory of linear viscoelasticity is used in order to obtain the constitutive
equation of the viscoelastic medium occupied by domain Q,,. For ¢ < 0, the system is assumed to be at rest. In the
time domain, the constitutive equation is then written as

oux, 1) = f Gx, 1) e(ulx,t—1))dr, (D)
0

in which 1 is the partial derivative of u with respect to ¢, where t — G(X, 1) is the relaxation function defined on
[0 + oo with values in the fourth-order tensor that satisfies the usual symmetry properties. Function ¢ — G(X, 1) is
differentiable with respect to 7 on ]0, +co[ and its partial time derivative ¢ — (G ikn (X, D)} jkn 1s assumed to be integrable
on [0, +oco[. At time ¢ = 0, the initial elasticity tensor G(x, 0) is positive definite. Consequently, Eq. (1) can be
rewritten as

—+00

oux,t) = Gx,0) : e(ulx, 1) + f gx, 1) e(u(x,t —1))dt, 2)

—00

where fourth-order tensor g(x, 7) is defined by g(x,7) = 0, if < 0 and g(x,1) = G(x, 1) if t > 0. Taking the Fourier
transform with respect to ¢ of both sides of Eq. (2), and introducing the real part g8(x,w) = Re{g(x, w)} and the
imaginary part g7(x, w) = Im{g(x, w)}, the constitutive equation in the frequency domain can be written as

ou(x, w)) = (ap(X) + a(x, w) + i wb(X, w)) : s(u(x, w)), 3)

where ao(x) = G(x, 0) and where the components a; (X, w) and b; (X, w) of the fourth-order real tensors a(x, w) and
b(x, w) are the viscoelastic coefficients that are such that

ax,w) =g X w) , wbXw) =g X w). (4)

Since g is a causal function of time, the real part g% and imaginary part g’ of its Fourier transform g are related
through a set of compatibility equations also known as the Kramers-Kronig relations [10,11]. These relations involve
the Hilbert transform [12] and are written as

1 Y ) 1 TR (X, W)
Fxw = —p.vf EY) do ?(x,a»:——p.vf s )
bis e W= W n e W= W

in which p.v denotes the Cauchy principal value. From Eqgs. (4) and (5), the following relation between the viscoelastic
tensors a(x, w) and b(X, w) can then be deduced, for all w > 0,

aX,w) = % p.vf " b W) do'’ . (6)

o wW—w

do’, (5)
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