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a b s t r a c t

Piezoelectric vibration power harvesters are being studied in the literature since they have high energy
conversion from mechanical vibrations. A computational model that optimizes piezoelectric vibration
energy harvester output power using homogenization of piezoelectric material is presented in this work.
This computational model allows piezoelectric material tailoring to create piezoelectric vibrational
energy harvesters capable of producing higher electrical power. The materials considered in the study
are single crystal and polycrystals of BaTiO3 and PZN-4.5%PT, and piezopolymer PVDF-TrFE and the piezo-
composites of these materials. The computational model is used to optimize the harvester power output
of the unimorph vibration harvester configuration. The harvesters are modelled using the finite element
method which is validated comparing analytical results for four traditional harvester configurations, viz.,
unimorph, bimorph, longitudinal generator and transverse generator. Single crystals, polycrystals and
piezocomposites made by piezoceramic and piezopolymer materials are considered in the optimization
procedure. Polycrystalline and piezocomposite properties are computed through a computational model
based in the homogenization theory, which is implemented using the finite element method. Electrical
resistance is used as the surrogate for the electrical machine connected to the harvesters. The design vari-
ables considered are the crystal orientation for single crystal materials, microstructural orientation dis-
tribution of the grains for polycrystalline materials, the piezoceramic material volume fraction and
piezopolymer orientation for piezocomposites and/or the circuit resistance. A simulated annealing algo-
rithm based in Metropolis algorithm is used as the optimizer. Several examples are presented and dis-
cussed considering excitations near as well as far away from resonance frequency. Harvesters with
material composites having optimal material configurations that deliver enhanced electrical power have
been identified.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays the development of low power electronics devices
encourages the use of ambient power harvesting devices. Among
them, piezoelectric harvesters convert ambient mechanical vibra-
tions into useable electric power. The recent advancements in
materials and circuits technologies plus low power consumption
devices encourage the use of piezoelectric materials for vibrations
energy harvesting [1–4]. The piezoelectric harvesters use the
piezoelectric effect to convert directly mechanical vibrations into
electrical energy and tap this energy by connecting the harvester
electrodes with an electric circuit. The use of optimization tech-
niques to design the material layouts of piezoelectric systems for
actuation or resonator systems have been studied previously
[3–5]. Various models including beam energy harvester frequency

self-tuning have been proposed to study piezoelectric vibrations
harvesters [5–8] being typically 1D or 2D, ignoring material aniso-
tropy effects since the orientation of the piezoelectric materials is
kept constant. Based on these models, methods to improve piezo-
electric vibration harvester power output were developed. Most
piezoelectric energy harvesting approaches to date focus on the
electromechanics of the piezoelectric transduction and use a tran-
sient or steady-state vibrational signature, usually at resonance, as
input for the base excitation of the piezoelectric harvesting struc-
ture which is often coupled one-way to a simple external harvest-
ing circuit [5–7]. It is shown that many of the outstanding
problems associated with piezoelectric transducers, including
mechanical stability under large stresses, electrical breakdown of
the material under high fields or reduction in efficiency due to
dielectric losses and depolarization can be overcome by smart
design and better material selection [3]. Here, in this work the
material anisotropy at the microstructural level is included in the
piezoelectric harvester model and its impact in power output is
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studied. A 3D modelling of piezoelectric vibration harvester is nec-
essary to study the effects of material anisotropy comprehensively.
A group of piezoelectric materials typically used for energy har-
vesting are the piezoelectric ceramics [1,2]. Among these materials
lead zirconate titanate (PZT) and barium titanate (BaTiO3) exhibit
very high dielectric and piezoelectric properties being suitable
for piezoelectric energy harvesters [1,2]. The piezoelectric materi-
als can be crystalline solids either with a single crystalline or poly-
crystalline microstructure. The polycrystalline solid grain (or
crystallite) orientations plus shape and grain boundaries can be
known using X-ray diffraction contrast tomography [9,10]. Con-
ventional methods to characterize the polycrystalline piezoelectric
ceramic properties can be found, e.g., in [11–13]. Previous works
[14] have shown that the value of piezoelectric and dielectric con-
stants can change with grain size for BaTiO3 and with grain bound-
ary thickness [15] for PbTiO3.

The piezoelectric materials properties used in harvesters can be
tailored, for example, by building a piezocomposite microstructure
[16,17] of piezoelectric rods and a polymer matrix, doping piezo-
electric material [18–20] or creating a composite microstructure
[21–23]. In this work we will address the tailoring of piezoelectric
material properties for unimorph configuration as an example of
the computational model capabilities. For this purpose, a computa-
tional model based in finite elements is applied to piezoelectric
harvesters while optimization combined with homogenization is
employed for the tailoring of the material. The finite element
method has been used successfully to model piezoelectric har-
vesters and shows a good approximation to experimental results
[6,24–27] showing a maximum relative difference of harvesters
displacement 14.3% and of peak frequency 12.5%. For the material
tailoring, two different cases will be considered, namely the single
crystal and the polycrystal. For the polycrystalline case, the charac-
terization of the macroscopic piezoelectric properties is made
using the asymptotic homogenization method for piezoelectricity
with a suitable representative volume element (RVE), (see, for
example, Galka et al. [28], Silva et al. [21]). Here, Ref. [22] is fol-
lowed for its application to polycrystalline case. The homogeniza-
tion method has been successfully used to model several
different physical problems [21–23,28–30] and has been shown
to provide good agreement both computationally and experimen-
tally [31]. The material tailoring consists in finding an optimal ori-
entation for piezoelectric single crystalline materials, or an optimal
statistical distribution of grain orientation for the polycrystalline
case [22]. Also, this will be applied to piezoceramics and compos-
ites of piezoceramics and piezopolymers. Though piezopolymers
[32,33] have lower piezoelectric coupling properties than piezoce-
ramics, they however possess significantly higher flexibility. This
will enable the possibility to produce a composite piezoelectric
material with high piezoelectric properties and good flexibility,
being suitable for low wind speed energy harvesters [34], automo-
bile tire harvesters [35], etc. Here we have assumed that the crystal
orientation distribution in a polycrystalline piezoelectric ceramic
material is a Gaussian or normal distribution as it is treated in
Ref. [22].

The main contribution of this work is the development of a
computational model for the optimization of piezoelectric har-
vesters. This model incorporates a simulated annealing optimiza-
tion algorithm, an in house finite element computational tool for
determining the homogenized piezoelectric material properties,
and commercial finite element software for the harvester mod-
elling. Several examples are presented to show the applicability
of the model. The significance of this work is the versatility of
the present 3D model of the transducer in the potential future
applications that envisage the harvester configuration to be suit-
able to any useful shapes or geometries. Hence in order to suit
the integration of the harvester to devices of various shapes and

geometries, a 3D transducer that harvest mechanical energy is
imperative.

This paper is divided into 12 sections. In Sections 2–9 the prob-
lem formulation is presented, describing all the aspects involving
the problem formulation, namely the harvested power, the homog-
enization equations, the harvester geometry, the piezoelectric har-
vester configurations, the finite element problem, the optimization
procedure, the material properties and the finite element model
validation. In Section 10 the unimorph harvester configuration is
optimized with respect to material orientation and resistance of
the electric circuit, for excitation far away from resonance. A piezo-
composite is also considered in this situation. In Section 11 the pre-
vious unimorph harvester configuration is tuned for ambient
vibrations, such that it operates near a resonance/natural fre-
quency. This new harvester is named UniT and its power output
is optimized for a collection of excitation frequencies around UniT
natural frequency, considering different piezoelectric materials
and also piezocomposites. In Section 12 conclusions and future
work are presented.

2. Problem formulation

To model the piezoelectric harvester, the classic electro-elastic
equations will be assumed in its linearized form, for infinitesimal
strains and potential gradients (see e.g. [36]). In piezoelectric
vibration energy harvesters typically electrodes are used to link
the piezoelectric material to the electric circuit as presented in
Fig. 1. For the harvester shown in Fig. 1, these equations can be
summarized as:

Tjk;j ¼ q €uk in X

Di;i ¼ 0 in X

Sij ¼ ui;jþuj;i
2

Ei ¼ �/;i

Tij ¼ CE
ijklSkl � ekijEk

Di ¼ eiklSkl þ eSikEk

D/ ¼ RI

ui ¼ ui on Cu

ti ¼ Tjinj on CT

/ ¼ /1 on C/1

/ ¼ /2 on C/2

Djnj ¼ 0 on CD

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where, in the equation of motion, Tji is the stress tensor, q material
density and uk the displacement; in the charge equation, Di is the
electrical displacement; Sij is the infinitesimal strain, Ei is the elec-
trical field and / the potential . In the linear constitutive equations,
CE
ijkl is the stiffness measured at constant electrical field, ekij is the

piezoelectric stress coefficients and eSik is the dielectric matrix mea-
sured at constant strain. The circuit equation relates the potential
difference with the resistance R and the electric current I through
it. Then for the boundary conditions, there are the usual prescribed
displacement uoi and traction ti conditions on Cu and CT , respec-
tively, and the prescribed potential /i and charge condition q ¼ 0
on C/i

and CD respectively as it can be seen in Fig. 1. Note that
the C/i

surfaces represent the electrode surfaces, and that the har-
vester surface C ¼ C/1 [ C/2 [ CD ¼ Cu [ CT . Einstein convention on
summation about dummy indices is followed in this paper and the
notation ai;j represents partial derivatives

@ai
@xj

with respect to spatial

coordinates. Each electrode has a constant electrical potential on a
surface C/i

. The total free electrical charge crossing C/i
is given by

expression,
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