
Microprocessors and Microsystems 51 (2017) 8–17

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Floating accumulator architecture

Yuan-Shin Hwang

a , ∗, Wei-Che Hsu

b

a Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
b MediaTek Inc., Science-Based Industrial Park, Hsinchu 300, Taiwan

a r t i c l e i n f o

Article history:

Received 4 May 2016

Revised 16 March 2017

Accepted 16 April 2017

Available online 17 April 2017

Keywords:

Instruction set architecture

Accumulator architecture

Instruction format

Compiler

a b s t r a c t

Although technology advancement can pack more and more physical registers in processors, the num-

bers of architectural registers defined by the instruction set architectures (ISAs) remain relatively small

on most modern processors. Exposing more architectural registers to compilers and programmers can im-

prove the effectiveness of compiler optimization and the quality of code. However, increasing the number

of architectural registers by simply adding extra bits to the register fields of instructions will expand the

code size. Therefore, a better way of exposing more ISA registers without significantly expanding the

code size is needed. This paper presents a new ISA called Floating Accumulator Architecture (FAA) that can

expand the number of ISA registers without increasing the instruction length. Unlike the accumulator

architecture whose accumulator is a fixed, special register, FAA dynamically chooses a register from the

general-purpose register file as the accumulator. In other words, the accumulator in FAA is an alias to

some register in the register file at any instruction, and the alias relation can be dynamically updated

by FAA at any program points. Since the accumulator implicitly stores the result, the destination register

field can be omitted from FAA instructions, resulting in a saving of 3 to 5 bits for each instruction. This

new free instruction bit space can be utilized in two possible ways: doubling the number of ISA registers

of modern 32-bit RISC processors or maintaining the number of ISA registers for 16-bit instructions on

embedded processors. This paper presents the result of utilizing the free bit space to double the number

of ISA registers from 16 to 32 on ARM processors, and experimental results show that performance can

be improved by 7.6% on average for MediaBench benchmarks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Technology advancement has made it easy for modern proces-

sors to pack large physical register files. As more physical registers

available to store variables close to the pipeline, performance can

be improved. However, the numbers of architectural registers de-

fined by the instruction set architectures (ISAs) remain relatively

small on most modern processors, ranging from 8 registers on IA-

32 to 32 registers on most RISC processors. Exposing more ar-

chitectural registers to compilers and programmers can improve

the effectiveness of compiler optimization and the quality of code.

Unfortunately, increasing the number of architectural registers by

simply adding extra bits to the register fields of instructions will

expand the code size, as adding one bit in the register field typi-

cally causes the instruction size to grow by 2 or more bits due to

multiple register fields in the instruction. As a result, modern pro-

cessors generally contain higher number of physical registers than

those exposed in the ISA.

∗ Corresponding author.

E-mail address: shin@csie.ntust.edu.tw (Y.-S. Hwang).

Instruction encoding space is more restricted on embedded pro-

cessors, as many of them provide “reduced bit-width” instruction

sets which encode the most commonly used instructions using

fewer bits [4,8,22] . Even if the hardware can support more reg-

isters, the number of architectural registers defined by ISA is much

smaller due to the encoding issue. A very good example is the ARM

processor with a 32-bit instruction set and a 16-bit instruction

called the Thumb [19] . Due to the smaller encoding space, most

THUMB instructions can only access 8 registers although all 16

registers are physically present and can contain values. Similarly,

the MIPS16 embedded processor also supports such dual instruc-

tion set feature, and its instructions can access only 8 registers out

of 32 general-purpose registers seen by MIPS32 instructions [20] .

The 16-bit format is shown to have significant cost-performance

advantages over the 32-bit format under typical memory system

performance constraints [8,22] . However, the compromises made

in designing the Thumb or MIPS16 instruction set leads to signifi-

cantly increased instruction counts [14] .

Restricting the number of architectural registers typically incurs

performance penalty since compilers and programmers can only

utilize the exposed architectural registers. There have been several

http://dx.doi.org/10.1016/j.micpro.2017.04.007

0141-9331/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2017.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2017.04.007&domain=pdf
mailto:shin@csie.ntust.edu.tw
http://dx.doi.org/10.1016/j.micpro.2017.04.007

Y.-S. Hwang, W.-C. Hsu / Microprocessors and Microsystems 51 (2017) 8–17 9

approaches proposed to increase the number architectural registers

without expanding the code size significantly. For instance, regis-

ter windows have been designed to provide more registers than al-

lowed in the encoding [18,21] . Differential encoding is a new regis-

ter encoding scheme that allows more registers to be addressed in

the operand field of instructions than the direct encoding currently

being used [22] . Hardware managed register allocation schemes

have even be developed to allocate more physical registers at run-

time [23] . Some new instructions have been introduced into the

instruction sets that can make use of all registers in all instruc-

tions by changing the visible subset of registers at any program

point [14] . Another possible approach is to find some underutilized

fields in instructions to represent more registers. It might be ben-

eficial to trade conditional execution for more registers on ARM

processors, as every ARM instruction carries a 4-bit condition field

in that specifies the predicate of conditional execution but ratios

of conditionalized instructions are generally very low [5] .

This paper presents a new ISA called floating accumulator archi-

tecture (FAA) that can expand the number of ISA registers with-

out widening the instructions. Similar to the traditional accumu-

lator architecture, FAA reduces the instruction width by making

the accumulator as the default destination of instructions. How-

ever, unlike the accumulator architecture whose accumulator is a

fixed, special register, FAA dynamically chooses a register from the

general-purpose register file as the accumulator. In other words,

the accumulator in FAA can be viewed simply as an alias to some

general-purpose register at any instruction, and the alias relation

can be dynamically updated by FAA at any program points. Since

the accumulator implicitly stores the result, the destination regis-

ter field can be omitted from FAA instructions, resulting in a sav-

ing of 3 to 5 bits for each instruction. There could be two pos-

sible ways to utilize the free bit space: quadrupling the number

of ISA registers of modern 32-bit RISC processors and maintaining

the number of ISA registers for 16-bit instructions on embedded

processors. This paper presents an LLVM [15] implementation that

utilizes the free bit space to double the number of ISA registers on

ARM processors, and experimental results shows that performance

can be improved by 7.6% on average for MediaBench benchmarks

when the number of ISA registers is extended from 16 to 32.

The main results of this paper are as follows:

• FAA can generally shorten instructions by 3 to 5 bits when

comparing to the general-purpose register (GPR) architectures

with the same register file size.

• FAA can double the number of ISA registers of modern 32-bit

RISC processors.

• FAA can avoid reducing the number of ISA registers for 16-bit

instructions on embedded processors.

• The microarchitecture for FAA is very similar to that of the GPR

architecture, as the accumulator in FAA can be viewed simply

as an alias to some general-purpose register at any instruction.

Therefore, it is very easy to implement FAA based on the GPR

microarchitecture.

The rest of this paper is organized as follows. Section 2 briefly

recaps some well-known instruction set architectures. Section 3 in-

troduces the new ISA and presents the microarchitecture that

supports FAA. Section 4 presents an applications of FAA to dou-

ble ARM registers, and Section 5 shows the experimental results.

Section 6 surveys the related work, and Section 7 concludes this

paper.

2. Instruction set architectures (ISAs)

ISAs can be generally classified into the following three types

• Stack architecture

• Accumulator architecture, and

• General-purpose register architecture

based on the type of internal storage in the processor [7,10] . A

stack architecture uses a operand stack to execute the instruc-

tion, and the operands are implicitly on the top of the stack, as

shown in Fig. 1 (a). An accumulator architecture has a special reg-

ister called the accumulator, which implicitly stores one operand

and the result, while the other operand comes from the memory,

as shown in Fig. 1 (b). Both the stack and accumulator architec-

tures have good code density, since implicit operands do not oc-

cupy any bit fields in instructions. Although most early computers

used stack or accumulator architectures, almost all the new archi-

tectures nowadays use the general-purpose register (GPR) archi-

tecture as registers are faster than memory and can be used ef-

fectively and efficiently. Since there are multiple registers to hold

the result and operands, both the destination and operand regis-

ters must be explicitly addressed by register fields of instructions

in the GPR architecture, as depicted in Fig. 1 (c). Consequently, the

GRP architecture has the worst code size among the three, as the

length of instructions is generally the greatest.

3. Floating accumulator architecture (FAA)

The key idea of the floating accumulator architecture (FAA) is

to assign one of the general-purpose registers as the accumulator,

which will in turn be the implicit destination register of an instruc-

tion. For any ALU operation, e.g. Ri = Rj op Rk, Ri must be des-

ignated as the accumulator (i.e. A ≡ Ri) and hence the operation

will be in fact represented by the instruction A = Rj op Rk. Since

the accumulator is implicitly addressed, it does not need to occupy

any register field in the instruction, as illustrated in Fig. 2 . Specif-

ically, FAA can use the two-address instruction format to express

instructions that are commonly represented by the three-address

instruction format in GPR architecture, and hence FAA can gener-

ally save the space of a register field (usually 3 to 5 bits) in every

instruction than the GPR architecture. As a result, FAA can have

better code density than the GRP architecture, while still enjoying

the advantages of accessing multiple general-purpose registers.

In contrast to the accumulator architecture, the accumulator of

FAA is not a fix, special-purpose register. Any general-purpose reg-

ister in the register file can be dynamically designated as the accu-

mulator. If the value of the current accumulator can not be over-

written, the value can be easily retained in the register by assign-

ing another register in the register file as the new accumulator.

This feature avoids the drawback of the accumulator architecture

that has to frequently copy data in and out of the accumulator.

The general form of the instructions in FAA is

A = Rj op Rk

which performs the specified operations on the values in regis-

ters Rj and Rk and then stores the result in the current accumula-

tor A. When a new accumulator is needed, it can be assigned by

the following accumulator assignment statement:

Rj = Rj op Rk

This statement performs an operations on the values of regis-

ters Rj and Rk, and then stores the result in Rj. In addition, it as-

signs Rj as the accumulator A. The previous accumulator can now

be referenced through the notion B or its original register number.

Fig. 3 is a sequence of code from SPEC benchmark 164.gzip,

along with the compiled Alpha assembly code and its equivalent

register transfer notation [13] . It is one of the more frequently ex-

ecuted parts of the program. The corresponding FAA code that is

displayed in Fig. 3 (d) shows that FAA can express the code with

almost the same number of instructions as Alpha. Only the first

https://isiarticles.com/article/153497

