Accepted Manuscript

Original article

Investigation of Material removal rate and Surface roughness during Wire electrical discharge machining (WEDM) machining of Inconel 625 super alloy by cryogenic treated tool electrode

Ashish Goyal

PII: S1018-3647(17)30333-6
DOI: http://dx.doi.org/10.1016/j.jksus.2017.06.005
Reference: JKSUS 492

To appear in: Journal of King Saud University - Science

Received Date: 1 April 2017
Accepted Date: 23 June 2017

Please cite this article as: A. Goyal, Investigation of Material removal rate and Surface roughness during Wire electrical discharge machining (WEDM) machining of Inconel 625 super alloy by cryogenic treated tool electrode, Journal of King Saud University - Science (2017), doi: http://dx.doi.org/10.1016/j.jksus.2017.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Investigation of Material removal rate and Surface roughness during Wire electrical discharge machining (WEDM) machining of Inconel 625 super alloy by cryogenic treated tool electrode

Corresponding Author: Ashish Goyal

Email Id: ashish.goyal@jaipur.manipal.edu

Mobile No: +91-9887174284

Mailing Address: Research Scholar, Department of Mechanical Engineering, Manipal University Jaipur,
Off Jaipur-Ajmer Expressway, Jaipur (Rajasthan), India - 303007

Abstract:

The present investigation focuses the effect of process parameters on material removal rate (MRR) and surface roughness (Ra) in wire electric discharge machining of Inconel 625. Machining was done by using a normal zinc coated wire and cryogenic treated zinc coated wire. The experiments were performed by considering different process parameters viz. tool electrode, current intensity, pulse on time, pulse off time, wire feed and wire tension. The thickness of work material and dia. of wire are kept constant. Taguchi L18 (2^1*3^5) orthogonal array of experimental design is used to perform the experiments. Analysis of variance (ANOVA) is employed to optimize the material removal rate and surface roughness. Based on analysis it is found that pulse on time, tool electrode and current intensity are the significant parameters that affect the material removal rate and surface roughness. The scanning electron microscopy (SEM) are used to identify the microstructure of the machined work piece.

Keywords: WEDM; Inconel 625; Taguchi method; material removal rate; surface roughness; SEM

1. Introduction

Electrical discharge machine (EDM) is one of the most prominently used advanced machining process. In EDM machining there is no contact between tool electrode and the work material which decreases the mechanical stress, chatter and vibration during machining of hard and super alloy material [1]. WEDM is a variant process of EDM. WEDM is a spark erosion process used to produce special geometrical shape and three dimensional profiles. In wire electrical discharge machine, a wire about 0.05 to 0.3 mm used as a tool electrode and
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات