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a b s t r a c t

In the paper we study the performance of the regularized boundary element quadrature
routines implemented in the BEM4I library developed by the authors. Apart from the
results obtained on the classical multi-core architecture represented by the Intel Xeon
processors we concentrate on the portability of the code to the many-core family Intel
Xeon Phi. Contrary to the GP-GPU programming accelerating many scientific codes, the
standard x86 architecture of the Xeon Phi processors allows to reuse the already existing
multi-core implementation. Although in many cases a simple recompilation would lead to
an inefficient utilization of the Xeon Phi, the effort invested in the optimization usually
leads to a better performance on the multi-core Xeon processors as well. This makes
the Xeon Phi an interesting platform for scientists developing a software library aimed
at both modern portable PCs and high performance computing environments. Here we
focus at the manually vectorized assembly of the local element contributions and the
parallel assembly of the global matrices on shared memory systems. Due to the quadratic
complexity of the standard assembly we also present an assembly sparsified by the
adaptive cross approximation based on the same acceleration techniques. The numerical
results performed on the Xeon multi-core processor and two generations of the Xeon Phi
many-core platform validate the proposed implementation and highlight the importance
of vectorization necessary to exploit the features of modern hardware.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An efficient implementation of the numerical quadrature routines is an inseparable part of any boundary element
software. Contrary to the finite element method, where the integrands are often well-behaved polynomial functions and
the integrals can sometimes be evaluated analytically, in the boundary element method (BEM) one has to deal with weakly
singular integrals. Another price to pay for the dimension reduction is the quadratic complexity of the standard BEM both in
terms of the computational time and memory requirements restricting its applicability to moderate problem dimensions.
To overcome this issue, several fast BEM methods can be employed to lower the complexity to almost linear. This includes
the fast multipole method [1–3] based on the approximation of the kernel by a truncated series, or the adaptive cross
approximation (ACA) [4,5] building low-rank blocks based on an algebraic point of view. Although these sparsification
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Fig. 1.1. Scalar and vectorized addition of two vectors c := a + b.

methods are inevitable for large-scale engineering problems, it is still crucial to efficiently assemble the so-called non-
admissible full blocks. Moreover, in the case of ACA, the low-rank approximation requires the evaluation of several rows
and columns of every admissible block, which relies on the standard full assembly. The abovementioned approaches can be
combined with a domain decomposition method, such as the boundary element tearing and interconnecting method [6–8].
Although these techniques allow for a massively parallel implementation in distributed memory systems, they still rely on
an efficient intra-node implementation with an extra layer of inter-node parallelization.

In the paper we concentrate on the acceleration of the standard BEM assembly in shared memory and its acceleration
by ACA. While the parallelization of similar scientific codes at the level of CPU cores has become standard, the feature that
is still often overlooked is the in-core vectorization supporting the Single Instruction Multiple Data (SIMD) concept, see
Fig. 1.1. Since the clock frequency ofmodern CPUs has not been growing as rapidly as in the previous decades, the increasing
advertised theoretical performance limits can only be reached by utilizing all available parallelization techniques.

In 1999 Intel issued the SSE (Streaming SIMD Extensions) instruction set capable of concurrent processing of four 32-bit
single-precision floating-point numbers. This feature has since been extended by the sets SSE2-4.2 addingmore instructions
and the ability to operate on two 64-bit double-precision operands. The AVX and AVX2 (Advanced Vector Extensions)
instruction sets increase the register size from 128 bits to 256 bits. While the first commercially available Intel Many
Integrated Core (MIC) architecture Knights Corner (KNC) supports the MIC specific Initial Many Core Instruction (IMCI) set,
the plan for future is to (at least partially) unify the instructions across bothmulti- andmany-core platforms—the upcoming
Skylake and Knights Landing architectures are to include the new AVX-512 instruction set with 512-bit registers able to
accommodate eight 64-bit double-precision operands.

The vectorization can be achieved by various techniques. The direct use of vector instructions can be utilized using the
inline assembler, i.e., the assembly code directly inserted into a high-level programming language. Such code is, however,
hard to understand and not portable between multiple architectures. A similar possibility is the use of intrinsic functions
provided by the vendor of the compiler. These functions produce the corresponding assembly code, leading again to a
non-portable code. Another option is to use an external library providing a high-level wrapper of the supported intrinsic
functions. This technique leads to a portable code, since the wrapper functions are compiled to the supported vector
instruction set. In [9] we describe this approach both for the semi-analytic and fully numerical integration schemes [4]
using the Vc library [10]. A more user-friendly way is to use the auto-vectorization capabilities of modern compilers. To
help the compiler identify the parts of the code suitable for vectorization the original code usually has to be refactored using
techniques such as loop unrolling, tiling, reordering, or collapsing. This has been used by the authors in [11] with additional
OpenMP 4.0 [12] pragmas and the accelerators used in the offload mode. Differently from [11], in this paper we concentrate
on the native deployment of the code which allows for direct comparison of the capabilities of the available multi- and
many-core platforms. Readers interested in multi- and many-core programming are referred to the monographs [13–15]
and a special Knights Landing edition [16] with additional tips on programming on this architecture.

In the context of BEM, the vectorization paradigm has been leveraged in [17], where the authors rely on the automatic
vectorization by the Fortran compiler. Although a reasonable speedup is reached, after the loop rearrangement the code is
much less readable than the original. In [18] the author explicitly uses the intrinsic functions provided by the compiler to
accelerate the generation of BEMmatrices. Unfortunately, the treatment of singularities, which represents one of the crucial
tasks in BEM and complicates the vectorization, is not discussed. The acceleration of the evaluation of the representation
formula on the Intel Xeon Phi coprocessor is described in [19]. For a similar discussion regarding first-order finite element
discretization on multi- and many-core architectures including the Xeon Phi coprocessor we also refer to [20].

There are several approaches for integrating the weakly singular kernel functions appearing in the Galerkin boundary
element methods. The first approach is based on integral substitutions rendering the integrand analytical via the
multiplication with the corresponding Jacobian allowing us to use the standard tensor product Gaussian quadrature
schemes. The advantage of this approach lies in its versatility—the same procedure can be used for a wide class of kernels,
including the kernels of the Laplace, Lamé, Stokes, Helmholtz, or Maxwell operators. This method has been studied in,
e.g., [21,22].

The second, a seemingly preferable way, is to compute the inner surface integral analytically, which allows us to treat
the limit singular entries. For the outer integral we can use a standard Gaussian quadrature scheme. This approach has been
described for the Laplace, Lamé, and Helmholtz equations in [4,23,24]. The serious drawback of this method is that tedious
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