
Future Generation Computer Systems 82 (2018) 127–141

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Concurrent hash tables on multicore machines: Comparison,
evaluation and implications
Zhiwen Chen a, Xin He a, Jianhua Sun a, Hao Chen a,*, Ligang He b

a College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
b Department of Computer Science, University of Warwick, Coventry CV47AL, United Kingdom

h i g h l i g h t s

• A unified testing framework for concurrent hash tables is presented.
• Extensive evaluations are performed from a wide range of perspectives.
• The experiments are conducted on four major multi-core hardware platforms.
• Implications made in this paper could be used as guidelines for future research.

a r t i c l e i n f o

Article history:
Received 3 August 2017
Received in revised form 13 November
2017
Accepted 27 December 2017
Available online 1 January 2018

Keywords:
Concurrent hash table
Multiprocessors
Multi-core
Synchronization
NUMA
Hardware transactional memory

a b s t r a c t

Concurrent hash table has been an area of active research in recent years, and a wide variety of fast and
efficient concurrent hash tables (CHTs) have been proposed to exploit the advantages of modern parallel
computer architectures such as today’s mainstream multi-core systems. As one of the fundamental
data structures widely used in software systems, existing works on CHTs focus on either algorithmic
improvements, or hardware-oriented optimizations, or application-specific designs. However, there is a
lack of a comprehensive and comparative study on different implementations. In this paper, we conduct
an experimental study on the state-of-the-art, and our goal is to critically review existing CHTs fromwider
aspects and with more detailed analysis. Concretely, we have conducted extensive evaluations of five
CHTs using a unified testing framework on four multi-core hardware platforms, and implemented our
HTM-based concurrent hash table. A variety of metrics such as throughput scalability, latency, impact of
memory hierarchy, thread pinning strategies, synchronization mechanisms, and memory consumption,
are measured in order to obtain the deep insights about performance impediments and good design
choices. With this study, we hope to identify potential issues and pinpoint promising directions for future
research of CHTs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the number of cores has been increasing on modern com-
puter architectures in recent years, challenges in inventing new
or enhancing existent concurrency data structures to fully lever-
age the hardware advancements are emerging. Hash table is a
well-known data structure, which provides simple interfaces to
access the elements. lookup, insert and delete are the three main
operations provided by hash tables. As it can offer constant time
lookup and update operation, it is widely used in most software
systems [1,2]. In spite of the fact that the study on sequential hash
tables is relatively mature, the research on concurrent hash tables
(CHTs) has attracted a lot of efforts in recent years, due to the

* Corresponding author.
E-mail address: haochen@aimlab.org (H. Chen).

promising performance, hardware advancement, and diversified
requirements in different usage scenarios.

Ideally, CHTs should achieve high performance and scalabil-
ity under different workloads and hardware settings. However,
designing and implementing such CHTs is very challenging [3,4].
Hardware-conscious CHTs leveraging platform-specific features
are often ineffective in obtaining portable performance [5]. On
the other hand, hardware-oblivious CHTs often fails to achieve
highest possible performance. Similarly, a CHT optimized for a
specific type of workloads may exhibit poor performance under
a slightly different workload. For example, the Read-Copy-Update
(RCU) based hash table is one of the workload sensitive CHTs. It
obtains high throughput and shows good scalability when dealing
with read-only workloads. However, for workloads with a small
fraction of update operation, it exhibits significant performance
degradation. In [5], the authors present a complete picture of

https://doi.org/10.1016/j.future.2017.12.054
0167-739X/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2017.12.054
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.12.054&domain=pdf
mailto:haochen@aimlab.org
https://doi.org/10.1016/j.future.2017.12.054


128 Z. Chen et al. / Future Generation Computer Systems 82 (2018) 127–141

how synchronization schemes behave in concurrent algorithms.
In most cases, when a scalability issue is encountered, it is not
straightforward to identify the root cause thatmay be the underly-
ing hardware, synchronization algorithm, usage of specific atomic
primitives, application context, or workloads.

Although both the industry and academia have proposed a
range of CHTs with different target such as Threading Building
Blocks (TBB) [6] and ConcurrentHashMap in Java [7], the perfor-
mance of CHTs not only is related to the application requirements
but also relies on the exploitation of lower-level hardware char-
acteristics. When profiling CHTs, we need to perform the analysis
by integratingmany relevant elements and considering at different
levels rather than evaluating based only on intuitive metrics such
as throughput and latency. Furthermore, with a unified testing
framework and a set of common performance metrics, it seems
that no single CHT can outperform others in all aspects when
handling a diversified set of workloads. On the other hand, from
the perspective of users, the effective way to adopt a CHT is to
clearly recognize all the potential performance obstacles. Unfortu-
nately, these practical concerns are rarely mentioned in previous
studies. Lacking a unified benchmark to evaluate CHTs, it is hard
for the users to make a decision about which CHTs to employ in
their software systems in order to attain desired performance. In
summary, a comprehensive and in-depth analysis is of significance
in using, designing, and optimizing CHTs. Inspired by the practices,
we choose five state-of-the-art CHTs to conduct a comprehensive
evaluation and analysis across a wide set of metrics. The five CHTs
taken from the literature are listed in Table 1with brief description.

CHTs in this study are written in C/C++, and they are evaluated
on 4 multi-core platforms: AMD Opteron, Intel Xeon Phi 7120P (a
many-core platform based on Intel MIC architecture), Intel Xeon
E5-2630, and Intel Xeon E7-4850. To the best of our knowledge, it
is the most comprehensive evaluation of concurrent hash tables to
date. We make the following contributions in this paper.

• First, we present a framework, named CHT-bench, which
provides a fair testing environment and unified interface for
the experiments by hiding the discrepancies of hardware
platforms, synthesizedworkloads, concurrencymodels, and
compiler configurations. The source code of this work can
be found at https://github.com/Gwinel/CHT-bench. In this
way, we can guarantee the experimental results generated
from our framework are fairly comparable between differ-
ent CHTs.

• Second, the evaluations are explored from a wide range
of perspectives including thread scalability, throughput, la-
tency, memory hierarchy impact, low-level synchroniza-
tion primitives, and memory usage. The inter-correlations
between relevant metrics are also discussed when neces-
sary. The experiments are conducted on four major hard-
ware platforms including IntelMIC and three representative
NUMA systems.We ported CHTs to theMIC platform, and to
our knowledge, this is the first extensive study of concurrent
hash tables on Intel MIC architecture.

• Third, implications about pitfalls, design trade-offs, and de-
sirable optimizations are summarized for each evaluated
metric, which can serve as guidelines for future research and
practical development of CHTs.

The rest of the paper is organized as follows. Section 2 pro-
vides brief background on CHTs and modern computer hardware
features. We present the experimental platforms and parameter
configurations in Section 3. A comprehensive analysis of CHTs are
made in Section 4. The related work is presented in Section 5.
Section 6 concludes this paper.

2. Background

The explosive growth of commercial multiprocessor machines
has brought about a revolution in the art of concurrent program-
ming. The shared-memory programming model enforced by the
underlying hardware and programming languages/runtime sys-
tems imposes much greater challenges in designing and verifying
concurrent data structures than their sequential counterparts. In
this section, we first introduce basic concepts and operations of
concurrent hash tables and common metrics used to evaluate
them. Inherent hardware features that have non-trivial impact on
the performance of concurrent data structures are then presented,
such as the intricacies of cache coherence on NUMA systems and
the interplay between the cache coherent protocol and synchro-
nization primitives.

A hash table (hash map) is a data structure that can map keys
to values. A hash table uses a hash function to compute an index
into an array of buckets or slots, from which the desired value
can be found. Hash collisions are unavoidable when hashing a
random subset of a large set of possible keys. The chained and
open addressing hashing are two common strategies to avoid hash
collisions.

A chained hash table indexes into an array of pointers to the
heads of linked lists. Each linked list cell has the key for which it
was allocated and the value which was inserted for that key. To
lookup a particular element from its key, the key’s hash is used to
work out which linked list to follow, and then that particular list is
traversed to find the element. The disadvantage of chained hashing
is that following pointers to search the linked list consumes more
memory. The advantage is that the chained hash is only linearly
slower as the load factor (the ratio of elements in the hash table to
the length of the bucket array) increases, even if it is large than 1.

An open-addressing hash table indexes into an array of pointers
to pairs of key/value. If there are hash collisions in the hash table,
certain schemes are needed to find another slot instead. Open-
addressing is usually faster than chained hashing when the load
factor is low because it does not need to follow pointers between
list nodes. However, itwill become slower as the load factor is close
to 1. In addition, the load factor of open addressing is always less
than 1.

A Concurrent Hash Table (CHT) is a hash table that allows
multiple readers andwriters (ormultiple readers and singlewriter)
to access shared objects concurrently. Like its sequential counter-
part, a CHT not only offers the same set of APIs, but can exert the
performance of multiprocessors more efficiently. Arbitrating con-
current accesses is a necessity for all concurrent data structures.
Lock-based and lock-free synchronization are two commonly used
concurrency programming model. For lock-based CHTs, critical
sections are protected by locks to ensure thread-safety. Coarse-
grained locking is relatively easy to implement, while prevent-
ing more efficient utilization of computing resources. With fine-
grained locking, multiple threads are allowed to operate on differ-
ent partitions of the data concurrently. Finer granularity is bene-
ficial to improve the overall performance but at the cost of more
implementation endeavors. Lock-free is another concurrency pro-
gramming paradigm without using explicit locks. Lock-free CHTs
are also widely proposed [12,13].

In pursuing high performance concurrent data structures, hard-
ware support for synchronization is also a main challenge. In
multi-processor multi-core environments, to maintain data con-
sistency, hardware cache-coherence is often needed to ensure
the consistency of accessing shared data from different cores.
A cache-coherence protocol maintains state transitions on load,
store, and atomic instructions (i.e., CAS and FAI). For example, a
protocol may choose different update and invalidation transitions
such as update-on-read, update-on-write, invalidate-on-read, or

https://github.com/Gwinel/CHT-bench


https://isiarticles.com/article/153736

