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A B S T R A C T

Simple heuristics are often regarded as tractable decision strategies because they ignore a great
deal of information in the input data. One puzzle is why heuristics can outperform full-information
models, such as linear regression, which make full use of the available information. These “less-
is-more” effects, in which a relatively simpler model outperforms a more complex model, are
prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent
advantage of simplifying computation or ignoring information. In contrast, we show at the
computational level (where algorithmic restrictions are set aside) that it is never optimal to
discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such
as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of
infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models
with the heuristics at one end and ordinary regression at the other. Critically, intermediate
models perform better across all our simulations, suggesting that down-weighting information
with the appropriate prior is preferable to entirely ignoring it. Rather than because of their
simplicity, our analyses suggest heuristics perform well because they implement strong priors
that approximate the actual structure of the environment. We end by considering how new
heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These
formal results have implications for work in psychology, machine learning and economics.

1. Introduction

Many real-world prediction problems involve binary classification based on available information, such as predicting whether
Germany or England will win a soccer match based on the teams’ statistics. A relatively simple decision procedure would use a rule to
combine available information (i.e., cues), such as the teams’ league position, the result of the last game between Germany and
England, which team has scored more goals recently, and which team is home versus away. One such decision procedure, the tallying
heuristic, simply checks which team is better on each cue and chooses the team that has more cues in its favor, ignoring any possible
differences among cues in magnitude or predictive value (Czerlinski, Gigerenzer, & Goldstein, 1999; Dawes, 1979). In the scenario
depicted in Fig. 1A this heuristic would choose England. Another algorithm, take-the-best (TTB), would base the decision on the best
single cue that differentiates the two options. TTB works by ranking the cues according to their cue validity (i.e., predictive value),
then sequentially proceeding from the most valid to least valid until a cue is found that favors one team over the other (Gigerenzer &
Goldstein, 1996). Thus TTB terminates at the first discriminative cue, discarding all remaining cues.

In contrast to these heuristic algorithms, a full-information model such as linear regression would make use of all the cues, their
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magnitudes, their predictive values, and observed covariation among them. For example, league position and number of goals scored
are highly correlated, and this correlation influences the weights obtained from a regression model (Fig. 1B). Although such cov-
ariances naturally arise and can be meaningful, the cue validities used by the tallying and TTB heuristics completely ignore them
(Martignon & Hoffrage, 1999). Instead, cue validities assess only the probability with which a single cue can identify the correct
alternative, as the proportion of correct inferences made by that cue alone across a set of binary comparisons (formal definition in
Appendix A). When two cues co-vary highly, they essentially provide the same information, but heuristics ignore this redundancy and
treat the related cues as independent information sources. In the heuristic literature, the learner is usually assumed to learn cue
validities from past experiences (i.e., the training data) (Gigerenzer & Goldstein, 1996; Gigerenzer & Todd, 1999).

Heuristics have a long history of study in cognitive science, where they are often viewed as more psychologically plausible than
full-information models, because ignoring data makes the calculation easier and thus may be more compatible with inherent cog-
nitive limitations (Bobadilla-Suarez & Love, 2018; Kahneman, 2003; Simon, 1990; Tversky & Kahneman, 1974). This view suggests
that heuristics should underperform full-information models, with the loss in performance compensated by reduced computational
cost. This prediction is challenged by observations of less-is-more effects, wherein heuristics sometimes outperform full-information
models, such as linear regression, in real-world prediction tasks (Chater, Oaksford, Nakisa, & Redington, 2003; Czerlinski et al., 1999;
Dawes, 1979; Gigerenzer & Goldstein, 1996; Goldstein & Gigerenzer, 2002; Hogarth & Karelaia, 2007; Katsikopoulos, Schooler, &
Hertwig, 2010). These findings have been used to argue that ignoring information can actually improve performance, even in the
absence of processing limitations. For example, Gigerenzer and Todd (1999) write, “There is a point where too much information and
too much information processing can hurt” (p. 21). Likewise, Gigerenzer and Brighton (2009) conclude, “A less-is-more effect,
however, means that minds would not gain anything from relying on complex strategies, even if direct costs and opportunity costs
were zero” (p. 111).

Less-is-more arguments also arise in other domains of cognitive science, such as in claims that learning is more successful when
processing capacity is (at least initially) restricted (Elman, 1993; Newport, 1990). Contrary to existing claims, we argue there is no
inherent computational advantage to simplicity of information processing. Less-is-more effects can arise only when the space of
models under consideration is limited to a particular family or architecture. At a computational level of analysis, where restrictions
on algorithms are set aside (Marr, 1982), more information is always better.

We cast our argument in a Bayesian framework, wherein additional information (input data) is always helpful but must be
correctly combined with appropriate prior knowledge. We first prove that the tallying and TTB heuristics are equivalent to Bayesian
inference under the limit of an infinitely strong prior. This connection suggests that heuristics perform well because their relative
inflexibility amounts to a strong inductive bias, one that is suitable for many real-world learning and decision problems.

We then use this connection to define a continuum of Bayesian models, determined by parametric variation in the strength of the
prior. At one end of the continuum (infinitely diffuse prior), the Bayesian model is equivalent to a variant of linear regression, and at
the other end (infinitely strong prior) it is equivalent to a heuristic. Although the Bayesian models mimic the heuristics perfectly in
the limit, a crucial difference is that the Bayesian account regulates cue weights but never discards any information. The models are
tested on classic datasets that have been used to demonstrate superiority of the heuristics over linear regression, and in all cases we
find that best performance comes from intermediate models on the continuum, which do not entirely ignore cue weights or cue
covariance but that nonetheless down-weight this information via the influence of their priors. These results suggest that the success
of heuristics, and findings of less-is-more effects more broadly in cognitive science, are due not to a computational advantage of
simplicity per se, but rather to the fact that simpler models can approximate strong priors that are well-suited to the true structure of
the environment.

Fig. 1. Illustrative example of a binary prediction task. (A) Predicting whether Team Germany or England will win is based on four cues: league position, last game
result, home vs. away match, and recent goal scoring. Cue validities (v) reflect the relative frequency with which each cue makes correct inferences across many team
comparisons (formula in Appendix A). Smiley and frowning faces indicate which team is superior on each cue, whereas a grey face indicates the two teams are equal on
that cue. For modeling, a cue is coded +1 when it favors the team on the left (Germany), −1 when it favors the team on the right (England), and 0 when the teams are
equal along that cue. (B) Irrespective of cue validity, cues can co-vary (illustrated by overlap) with the criterion variable but also with each other. The heuristics
considered here ignore this covariance among cues.
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