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h i g h l i g h t s

• A Bayesian analysis of circular data using a GLM-type model based on the von Mises distribution is proposed.
• A weakly informative prior solves issues that are common for this model in a frequentist setting.
• Hypothesis tests are developed for both equality and inequality constrained hypotheses.
• The model is shown to work well and provide valuable insight for psychological research.
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a b s t r a c t

Motivated by a study from cognitive psychology, we develop a Generalized Linear Model for circular data
within the Bayesian framework, using the von Mises distribution. Although circular data arise in a wide
variety of scientific fields, the number of methods for their analysis is limited. Our model allows inclusion
of both continuous and categorical covariates. In a frequentist setting, this type of model is plagued by
the likelihood surface of its regression coefficients, which is not logarithmically concave. In a Bayesian
context, a weakly informative prior solves this issue, while for other parameters noninformative priors
are available. In addition to anMCMC sampling algorithm, we develop Bayesian hypothesis tests based on
the Bayes factor for both equality and inequality constrained hypotheses. In a simulation study, it can be
seen that our method performs well. The analyses are available in the package CircGLMBayes. Finally, we
apply thismodel to a dataset fromexperimental psychology, and show that it provides valuable insight for
applied researchers. Extensions to dependent observations are within reach bymeans of the multivariate
von Mises distribution.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Circular data are measured in angles or directions, and are
frequently encountered in scientific fields as diverse as life sci-
ences (Mardia, 2011), behavioral biology (Bulbert, Page, & Bernal,
2015), cognitive psychology (Kaas & Van Mier, 2006), bioinfor-
matics (Mardia, Hughes, Taylor, & Singh, 2008), political science
(Gill & Hangartner, 2010) and environmental sciences (Arnold &
SenGupta, 2006; Lagona, 2016; Lagona, Picone, Maruotti, & Cosoli,
2015). In psychology, circular data occur often in motor behavior
research (Baayen, Klugkist, & Mechsner, 2012; Mechsner, Kerzel,
Knoblich, & Prinz, 2001; Mechsner, Stenneken, Cole, Aschersleben,
& Prinz, 2007; Postma, Zuidhoek, Noordzij, & Kappers, 2008), as
well as in the application of circumplex models (Gurtman, 2009;
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Gurtman& Pincus, 2003; Leary, 1957). Circular data differ from lin-
ear data in the sense that circular data aremeasured in a periodical
sample space. For example, an angle of 1◦ is quite close to an angle
359◦, although linear intuition suggests otherwise.

Therefore, linear models may not properly describe the process
that has generated the circular data of interest. Circular data anal-
ysis has been developed to deal with this, although attention to
this type of analysis has been limited. Only slightly more than a
handful of in-depth books on circular data analysis have been pub-
lished (Fisher, 1995; Jammalamadaka & Sengupta, 2001; Mardia &
Jupp, 1999; Pewsey, Neuhäuser, & Ruxton, 2013), and in general,
statistical methods for circular data are somewhat limited.

Here, attention is turned to analysis of datasets with a circular
outcome, predicted by covariates that can be continuous (linear) or
categorical. This leads to a structure similar to the Generalized Lin-
earModel (GLM), which has bothmultiple regression and ANCOVA
as special cases.
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Three main approaches to circular data analysis might be dis-
tinguished. First, the intrinsic approach employs distributions di-
rectly defined on the circle (Artes, 2008; Fisher & Lee, 1992).
Second, the wrapping approach ‘wraps’ a univariate distribution
around the circle by taking the modulus of data on the real
line (Coles, 1998; Ferrari, unpublished). Third, the embedding ap-
proach projects points from a bivariate distribution to the circle
(Hernandez-Stumpfhauser, Breidt, van der Woerd, et al., 2015;
Maruotti, 2016; Nuñez-Antonio & Gutiérrez-Peña, 2014; Nuñez-
Antonio, Gutiérrez-Peña, & Escarela, 2011;Wang & Gelfand, 2014).
While the wrapping and embedding approach provide promising
avenues of study in their own right, here attention is restricted to
the intrinsic approach, as itmight provide themost natural analysis
of circular data.

Within the intrinsic approach, the circular analogue to the Nor-
mal distribution is the von Mises distribution (Von Mises, 1918).
This symmetric unimodal distribution is given by

M(θ | µ, κ) = [2π I0(κ)]−1 exp (κ cos [θ − µ]) , (1)

where θ ∈ (−π, π ) represents an angular measurement, µ ∈
(−π, π ) represents the mean direction, κ ∈ R+ is a concentration
parameter, and I0(·) represents the modified Bessel function of the
first kind and order zero. Some examples of frequentist methods
that employ the vonMises distribution are a circular ANOVA (Wat-
son &Williams, 1956), circular ANCOVA (Artes, 2008) and circular
regression (Fisher & Lee, 1992). Here, a Bayesian analysis of such
models will be developed.

Early approaches to Markov chain Monte Carlo (MCMC) sam-
pling for the vonMises distribution provide amethod for sampling
µwhen κ is known (Mardia & El-Atoum, 1976) and sampling both
parameters for a single group of data (Damien & Walker, 1999).
Guttorp and Lockhart (1988) present a conjugate prior for the
von Mises model. Recent theoretical work has much improved the
efficiency of the sampling of the concentration parameter of the
von Mises distribution (Forbes & Mardia, 2015).

Somedevelopment has also taken place in the field of semipara-
metric inference for circular datamodels, often usingDirichlet pro-
cess priors (Bhattacharya& Sengupta, 2009;George&Ghosh, 2006;
Ghosh, Jammalamadaka, & Tiwari, 2003; McVinish & Mengersen,
2008). In particular, Ghosh et al. (2003) provide Bayes factors for
the simple hypothesis test of equality of two means. However,
these methods are generally complex, which makes it hard to
extend these models, for example to include covariates. Therefore,
we will focus on parametric models, with residuals following the
von Mises distribution.

A Bayesian circular regression analysis has been developed by
Gill and Hangartner (2010), using starting values from a frequen-
tist iterative reweighted least squares (IRLS) algorithm, which is
similar to that used by Fisher and Lee (1992). Gill and Hangartner
(2010) note that the likelihood function of the regression coeffi-
cients from their model is not globally logarithmically concave,
which might cause the algorithm to converge to a local maxi-
mum. To combat this, Gill and Hangartner (2010) advise careful
inspection of the likelihood surface of the regression coefficients.
Drawbacks of the approach taken by Gill and Hangartner (2010)
are that a prior is not specified, the algorithm is slow, categorical
predictors are not treated separately and for larger models it may
be unclear whether the regression coefficients have converged to
the global maximum.

Recent work has provided a multivariate extension of the von
Mises distribution (Mardia et al., 2008; Mardia & Voss, 2014),
which offers a promising new way of thinking about circular co-
variate models. The multivariate von Mises was applied in this
context by Lagona (2016)within a Generalized LinearModel (GLM)
setting, applying MCMC likelihood approximation as in Geyer and
Thompson (1992) to computemaximum likelihood estimates. This

approach is not Bayesian, but it is a promising approach because
of its flexibility, allowing both the mean and concentration to be
dependent on an arbitrary set of covariates, as well as allowing
observations to be dependent.

There are three main drawbacks of the circular GLM approach
to circular data analysis currently. First, the GLM approach is not
free from the lack of concavity as described in Gill and Hangartner
(2010), although this has not yet been investigated in detail. Sec-
ond, the current approach does not have separate parameters for
differences in group mean direction, which precludes the popular
ANCOVA model to some extent. Third, Bayesian hypothesis tests
for this model are not available, which limits its applicability.

The structure of this paper is as follows. The circular data GLM
model is developed in a fully Bayesian setting in Section 2. The lack
of concavity in the likelihood function will be examined, and sug-
gestions will be formulated on how to deal with this issue. Details
on the MCMC sampler are provided in Section 3. Section 4 outlines
Bayesian hypothesis tests for this model, both for equality and
inequality constrainedhypotheses. Then, a simulation study for the
method is provided in Section 5. Section 6 provides an application
of ourmethod to empirical data from cognitive psychology. Finally,
Section 7 provides a short discussion.

2. Bayesian circular GLM

Consider a dataset {θi, xi, di}, (i = 1, . . . , n), where θi ∈
[−π, π ) is a circular outcome variable, xi ∈ RK is a column vector
of continuous linear covariates which are assumed to be standard-
ized, and di ∈ {0, 1}J is a column vector of dichotomous variables
indicating group membership. Assume that each observed angle θi
is generated independently from a von Mises distribution M(θi |
µi, κ). Then, µi is chosen to be

µi = β0 + δ
Tdi + g(βTxi), (2)

where β0 ∈ [−π, π ) is an offset parameter which serves as a
circular intercept, δ ∈ [−π, π )J is a column vector of circular
group difference parameters, g(·) : R → (−π, π ) is a twice
differentiable link function, and β ∈ RK is a column vector of
regression coefficients. Fisher and Lee (1992) and Jammalamadaka
and Sengupta (2001) discuss the choice of the link function. A com-
mon and natural choice for the link function is g(x) = 2tan−1(x),
which we will focus on here.

This model specification differs from the usual approach to
circular regression models, as these generally set µi = β0 +

g(βTxi) (Fisher & Lee, 1992; Gill &Hangartner, 2010; Lagona, 2016).
However, we view this model as unsatisfactory when including
dichotomous predictors in x, which we will illustrate in Fig. 1.
Consider a single dichotomous predictor d added to a model with
a single continuous predictor x. The dichotomous predictor might
be added into the model as µ = β0 + g(βx + δd). Adding δ in the
link function shifts the location of the prediction line, but also its
shape. Therefore, the shape for d = 0 is fixed, but for d = 1 the
shape is dependent on a free parameter, δ. This makes the shape
of the prediction line (and therefore the analysis) depend on the
arbitrary choice of reference group, which can be seen in Fig. 1a. To
solve this, we advocate setting µ = β0 + δd+ g(βx), the resulting
prediction lines of which are shown in Fig. 1b.

A comparable approach is taken in Artes (2008), where a sep-
arate intercept is estimated for each group. However, having a
separate intercept for each group means that a factorial design
with main effects only cannot be specified. In many applications,
especially in psychology, this is problematic. The approach here is
more flexible in that it allows a researcher to either fit amodelwith
main effects only, to fit a model with specific interactions, or to
compare these models. In addition, Artes (2008) also describes a
non-parallel case where the regression parameters are estimated
separately for each group. This model can be obtained as a special
case of the model provided here by including appropriate interac-
tion terms in the model.
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