
1

3 Software defect prevention based on human error

4 theories

5 Fuqun Huang a,b,*, Bin Liu a

6
aSchool of Reliability and System Engineering, Beihang University, Beijing 100083, China

7
b Institute of Interdisciplinary Scientists, Seattle 98115, WA, USA

8 Received 16 March 2016; revised 5 July 2016; accepted 23 December 2016
9

11 KEYWORDS
12

13 Human factor;
14 Human error;
15 Programming;
16 Root cause analysis;
17 Software defect prevention;
18 Software design;
19 Software quality;
20 Software psychology

Abstract Software defect prevention is an important way to reduce the defect introduction rate. As

the primary cause of software defects, human error can be the key to understanding and preventing

software defects. This paper proposes a defect prevention approach based on human error mecha-

nisms: DPeHE. The approach includes both knowledge and regulation training in human error pre-

vention. Knowledge training provides programmers with explicit knowledge on why programmers

commit errors, what kinds of errors tend to be committed under different circumstances, and how

these errors can be prevented. Regulation training further helps programmers to promote the

awareness and ability to prevent human errors through practice. The practice is facilitated by a

problem solving checklist and a root cause identification checklist. This paper provides a systematic

framework that integrates knowledge across disciplines, e.g., cognitive science, software psychology

and software engineering to defend against human errors in software development. Furthermore,

we applied this approach in an international company at CMM Level 5 and a software development

institution at CMM Level 1 in the Chinese Aviation Industry. The application cases show that the

approach is feasible and effective in promoting developers’ ability to prevent software defects, inde-

pendent of process maturity levels.
� 2017 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

21

221. Introduction

23With the increasing dependence on software to realize complex
24functions in the modern aeronautic systems, software has
25become the major determinant of the systems’ reliability and
26safety.1 Software defect prevention (DP) is an important strat-
27egy to improve software quality and reduce development costs
28by preventing defects from reoccurring.2,3 Defect prevention
29can be employed at the early stages of software development
30to reduce defect introduction rates and thus cut down the
31effort of defect detection and fixing.4

* Corresponding author at: School of Reliability and System

Engineering, Beihang University, Beijing 100083, China.

E-mail address: huangfuqun@gmail.com (F. Huang).

Peer review under responsibility of Editorial Committee of CJA.

Production and hosting by Elsevier

Chinese Journal of Aeronautics, (2017), xxx(xx): xxx–xxx

Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com

http://dx.doi.org/10.1016/j.cja.2017.03.005
1000-9361 � 2017 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

CJA 814 No. of Pages 17

24 April 2017

Please cite this article in press as: Huang F, Liu B Software defect prevention based on human error theories, Chin J Aeronaut (2017), http://dx.doi.org/10.1016/j.
cja.2017.03.005

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:huangfuqun@gmail.com
http://dx.doi.org/10.1016/j.cja.2017.03.005
http://dx.doi.org/10.1016/j.cja.2017.03.005
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2017.03.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.cja.2017.03.005
http://dx.doi.org/10.1016/j.cja.2017.03.005


32 Existing DP emphasizes software process improvement
33 based on learning from historic failures. It proceeds as a spe-
34 cialized team chooses defect samples from a database, identi-
35 fies causes of these defects and then produces strategies of
36 process improvement for the current project.2,5–9 This para-
37 digm works effectively in preventing defects that are caused
38 by process flaws, e.g. insufficient requirement tracking. How-
39 ever, software developers’ cognitive failures are insufficiently
40 addressed.10

41 An approach for preventing software developers’ cognitive
42 failures is urgently required in the Chinese Aviation Industry.
43 One of the authors’ previous studies,11 which investigated a
44 total of 3747 defects from 70 software systems developed by
45 29 Chinese aviation organizations, shows that individual cog-
46 nitive failures cause 87% of the severe residual defects. This
47 study also shows that the process maturity levels of most soft-
48 ware development institutions in the Chinese aviation industry
49 are below CMM Level 3; under this situation, the conventional
50 DP process is hard to implement due to the lack of root-cause
51 data and a systematic root-cause taxonomy.10 Cognitive errors
52 are the primary cause of software defects,12 since software is
53 the representation of human thoughts.13,14 If software devel-
54 opers understand why, how, and when they are prone to com-
55 mit errors, they could prevent errors more effectively.15 It is
56 scientifically interesting and an urgent demand to promote
57 software developers’ cognitive abilities to prevent software
58 defects.
59 This paper proposes a human-centered defect prevention
60 approach to improve software developers’ cognitive abilities
61 with respect to human error prevention. This approach empha-
62 sizes learning from software errors based on their underlying
63 causal mechanisms. For convenience, we name this approach
64 briefly as ‘‘defect prevention based on human error theories”
65 (DPeHE). In the next section, we review the concepts and
66 related work. In Section 3, we present the design of the
67 approach. Section 4 presents two application cases. Section 5
68 presents the discussions and conclusion.

69 2. Related work

70 2.1. Traditional defect prevention

71 The DP processes reported in the existing literature are gener-
72 ally similar to the traditional defect prevention process2 or the
73 corresponding defect causal analysis process (D. N. Card,
74 2006). The typical process of conventional DP includes the fol-
75 lowing major steps6: (1) select defect samples from historical
76 database, (2) hold causal analysis meeting to identify defect
77 causes and develop prevention action proposals, and (3) imple-
78 ment preventative actions. Therefore, to implement DP, three
79 resource elements are required: (1) a database and tool for
80 defect sample selection and action tracking, (2) a cause classi-
81 fication method for identifying root causes, and (3) an action
82 team with good expertise of root cause analysis. DP has shown
83 to be effective in preventing software defects, especially from a
84 perspective of process improvement.4,5 Despite the great pro-
85 gress made in past years, some aspects require further study.
86 The key of conventional defect prevention is how to iden-
87 tify root causes. However, this process strongly depends on
88 expert experience. Root cause taxonomies are proposed to
89 aid root cause analysis, which are summarized in Table 1.

90Unfortunately, these taxonomies seem too abstract to be help-
91ful for those organizations with little experience. Root causes
92are generally classified into four categories: method, people,
93tool, and requirement; detailed causes are analyzed by brain-
94storming with cause-effect diagrams.7–9 Generally, brainstorm-
95ing is a good method for gathering new ideas, but it is not as
96reliable for repeated use. For example, defect causes analyzed
97by different people may fall into different categories, be over-
98lapped or even be omitted. This problem reduces the possibil-
99ity of recurring good effects across different organizations. It is
100no accident that defect causal analysis is often misunderstood
101and misapplied in the software industry.7

102The other problem is how to choose defect samples. The
103common method is choosing according to defect type, which
104is generally defined by the orthogonal defect classification
105(ODC).16 However, there is a lack of scientific criteria to help
106people make decisions about what historical defects have
107heuristic meanings for the current project. Again, this process
108strongly depends on the experience of the team members. As a
109result, it is hard for those organizations with scarce data to
110implement DP, as there are hardly any defect samples for
111reference.
112In the authors’ previous study,10 a structural taxonomy of
113root causes has been recently proposed to address these prob-
114lems. More efforts are required to provide software developers
115with explicit knowledge strategies, as well as a training pro-
116gram to improve their awareness and abilities to prevent
117human errors. DPeHE is proposed to address these needs.

1182.2. Human errors

119Human errors have been studied along with developments in
120cognitive psychology since the 1970s. In terms of fundamental
121theories, Reason’s work (1990) is regarded as the most system-
122atic theory that is widely accepted and applied in safety critical
123domains. However, these theories tend to be ‘‘theoretical and
124less analytical”.18,19 Only after being adapted and integrated
125to the application contexts can these basic human error modes
126be very powerful in practice.

Table 1 Summary of existing root cause classifications.

Author Classification

Mays, Jones,

Holloway and

Studinski3

Communication, oversight, education,

and transcription

Leszak, Perry and

Stoll17
Change coordination, lack of domain

knowledge, lack of system knowledge,

lack of tool knowledge, lack of system

knowledge, lack of tools knowledge, lack

of process knowledge., Individual

mistake, introduced with other repair,

communication problems, missing

awareness for need of communication,

and not applicable

Card6 Methods, which may be incomplete,

ambiguous, wrong, or unenforced; tools

and environment, which may be clumsy,

unreliable, or defective; people, who may

lack adequate training or understanding;

and input and requirements, which may

be incomplete, ambiguous, or defective

Kalinowski, Travassos

and Card8

2 F. Huang, B. Liu

CJA 814 No. of Pages 17

24 April 2017

Please cite this article in press as: Huang F, Liu B Software defect prevention based on human error theories, Chin J Aeronaut (2017), http://dx.doi.org/10.1016/j.
cja.2017.03.005

http://dx.doi.org/10.1016/j.cja.2017.03.005
http://dx.doi.org/10.1016/j.cja.2017.03.005


https://isiarticles.com/article/153794

