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Available online xxxx The momentum and thermal energy equations describing the forced convection heat transfer from a heated
sphere settling at the axis of a long cylindrical tube filled with a power-law fluid have been solved numerically.
The extensive new results reported herein encompass wide ranges of conditions as: Reynolds number, 1 ≤ Re
≤ 100; Prandtl number, 5 ≤ Pr ≤ 100, power-law index, 0.2 ≤ n ≤ 2 and blockage ratio, 0.5 ≤ λ ≤ 0.95. The range
of values of the power-law index (n) used here include both the shear-thinning (n b 1) and shear-thickening
(n N 1) fluid behaviours. The overall heat transfer is strongly modulated by Re, n and λ depending upon whether
the recirculation region is formed in the rear of the sphere and/or on the proximity of the tubewall. Furthermore,
the results reported herein elucidate the effect of the type of thermal boundary condition (isothermal or isoflux)
on the surface of the sphere aswell as that of the velocity profile (uniform or fully developed Poiseuille profile) in
the tube. Overall, the average Nusselt number bears a positive dependence on the Reynolds and Prandtl numbers
and blockage ratio. The shear-thinning behaviour (n b 1) augments heat transfer over and above the correspond-
ing Newtonian value whereas shear-thickening behaviour (n N 1) adversely influences it. The present numerical
results (~4000 data) have been consolidated by incorporating the blockage factor into an existing expression
valid for λ = 0 for Newtonian fluids.
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1. Introduction

Owing to its fundamental significance, much research effort has
been expended in studying the settling of a sphere in power-law fluids,
for it constitutes a classical problem in the domain of fluid mechanics.
Also, a falling sphere in stationary and moving fluids in cylindrical
tubes denotes an idealization of several industrially important applica-
tions such as the falling ball viscometer, thermal treatment of food stuffs
in tubes, and in modelling slurry pipelines transporting coarse particles
in non-Newtonian carriers including the removal of debris in drilling
operations [1–3]. While in the falling ball viscometry, the terminal set-
tling velocity of a sphere is measured in a stationary medium, in case
of slurry pipelines and thermal treatment of foodstuffs, a particle is ex-
posed to the fully developed velocity distributionwhichmay further get
modified dependingupon the concentration of particles. In any case, it is
the relative velocity between the sphere and thefluidwhich determines
the momentum and heat transfer characteristics. Consequently, over
the years, a wealth of information has accrued about various aspects
of this configuration like drag, wake and heat transfer characteristics

from an unconfined sphere and this body of information has been
reviewed in some recent studies, e.g., see Ref. [2]. Broadly, the drag is in-
creased above its Newtonian value accompanied by a concomitant aug-
mentation in heat transfer coefficient (Nusselt number) in shear-
thinning fluids (n b 1) [2,4]. However, the influence of power-law
index (n) on sphere drag is more prominent in the viscosity dominated
low Reynolds number regime whereas the varying levels of enhance-
ment in heat transfer are obtained only at moderate Peclet numbers.
Combined together, the reliable numerical predictions of drag and
Nusselt number are now available up to Re=100 and Pe=104. Suffice
it to add here that the drag results are consistent with the available ex-
perimental results [2,5]. The next generation of studies in this field has
dealt with the effect of symmetric and asymmetric confinement by con-
sidering the sedimentation of a sphere at the axis [6–11] and off-axis
[12,13] locations in cylindrical tubes filled with power-law fluids. In
this case additional effects are encountered depending upon the veloc-
ity profile in the tube, i.e., whether the sphere settles in a stationary fluid
or in the Poiseuille flow conditions. The presence of the confining walls
alters the flow field in the close proximity of the sphere due to the up-
wardmotion of the fluid displaced by the settling sphere. This sharpens
the velocity and temperature gradients on the surface of the sphere
thereby augmenting the hydrodynamic drag and the Nusselt number
with reference to the corresponding values in unconfined fluids under
otherwise identical conditions. The low Reynolds number drag results
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for a confined sphere are consistent with the experimental results [2,9],
but the two values begin to deviate increasingly with the increasing
values of the Reynolds number and/or decreasing value of the power-
law index [7,9]. As of now, these results are limited to λ ≤ 0.5 and Re
≤ 100 [6–11]. The enhancement in heat transfer is ascribed to the thin-
ner thermal boundary layers in power-law fluids (n b 1) than that in
Newtonian fluids [14]. This body of knowledge is neither as extensive
nor as coherent as that for Newtonian fluids [2,15], albeit much of the
work relates to the case of a sphere settling at the axis of a cylindrical
tube and deals with wall effects on drag behaviour. Intuitively, it ap-
pears that as the value of λ is increased beyond λ N 0.5, the velocity
and temperature fields around the sphere are further modified owing
to the proximity of the wall. This effect is less severe for λ b 0.5, for
the wall is still sufficiently far away vis-à-vis the thickness of the ther-
mal boundary layers formed on the sphere. It is likely that for high
values of λ such as 0.8 or 0.9, due to the fluid acceleration in the annulus
formed by the tube wall and the sphere surface leading to relatively
large values of the local Reynolds number (compared to its nominal
value), further sharpening of the velocity and temperature gradients
may occur. This will lead to stronger interactions between the tube

wall and the thin boundary layers formed on the sphere. Under some
conditions, recirculating regions are also formed along the wall of the
tube. This study endeavours to elucidate the role of severe blockage (λ
N 0.5) on heat transfer from a sphere in power-law fluids thereby ex-
tending the range of currently available results especially in terms of
the blockage ratio.

In particular, the momentum and energy equations have been
solved numerically here over the following ranges of conditions of the
pertinent governing parameters: Reynolds number (1 ≤ Re ≤ 100);
Prandtl number (5 ≤ Pr ≤ 100); power-law index (0.2 ≤ n ≤ 2) and the
blockage ratio (0.5 ≤ λ ≤ 0.95). The present predictions of drag are vali-
dated using the corresponding results for Newtonian and power-law
media up to λ ~ 0.5–0.6 available in the literature while no prior results
(numerical or experimental) are available on Nusselt number, even in
Newtonian fluids.

2. Problem definition

Since the problem formulation, simplifying assumptions and the
governing equations along with the boundary conditions are detailed
in previous studies [6,8–11,16], these are not repeated here. Fig. 1
shows the two cases of a sphere (of diameter d) falling with an average
velocity V0 in a quiescent fluid in a tube of diameterD, Fig. 1(a) and that
of the sphere exposed to the fully developed profile (Poiseuille flow, Fig.
1(b)). Naturally, the two cases differ only in terms of the boundary con-
ditions. No-slip condition (Vr=0, Vz=0) is used both on the surface of
the sphere and on the walls. For temperature, the wall is assumed to be
adiabatic and the condition on the surface of sphere is that of constant
temperature ξ=1 for the isothermal and−∂ξ/∂ns=1 for the constant
heat flux condition. The other boundary conditions are shown in Fig. 1.
Dimensional considerations of the governing equations and boundary
conditions in both cases suggest the heat transfer characteristics (iso-
therm contours, local and average Nusselt number) to be functions of
the following four dimensionless parameters:

Reynolds number : Re ¼ ρV0
2−ndn

m

Prandtl number : Pr ¼ c
k
m

V0

d

� �n−1

Power−law index : n

Blockage ratio : λ ¼ d
D
:

The local Nusselt number,Nuθ, is simply given by −∂ξ/∂ns for the
isothermal case, and by 1/ξ for the constant heat flux case. Here, ns is
the unit vector normal to the surface of the sphere. Such local values
of the Nusselt number can be integrated over the surface of the sphere
to obtain themeanNusselt number,Nuavg. Evidently, for a given thermal
boundary condition and the type of velocity profile in the tube, the av-
erage Nusselt number is expected to be a function of Re, Pr, n and λ.
This work endeavours to explore and develop this functional
relationship.

3. Numerical methodology and choice of parameters

The non-linear momentum and energy equations have been solved
using thefinite element basedmethod COMSOLMultiphysics® (version
4.3a), as detailed in our previous studies [7–9,16,17]. Suffice it to say
here that very fine triangular mesh of element size within a range of
7.75 × 10−4–5.42 × 10−2 was employed close to the surface of the
sphere (up to a radial distance of d/2) and the rest of the region was
meshed using quadrilateral elements of non-uniform size to economize
on the required computational resources. A simulation was deemed to

Nomenclature

c thermal heat capacity of fluid, J kg−1 K−1

d sphere diameter, m
D tube diameter, m
h local heat transfer coefficient, W m−2 K−1

k thermal conductivity of fluid, W m−1 K−1

Ld downstream domain, m
Lu upstream domain, m
m power-law consistency index, Pa sn

n power-law index, dimensionless
ns unit normal vector to the surface of sphere, dimension-

less
Nuavg average Nusselt number (=hd/k), dimensionless
Nucond conduction limit of the averageNusselt number, dimen-

sionless
Nuθ local Nusselt number (=−∂ξ/∂ns for CWT; =1/ξ for
CHF), dimensionless
Pe Peclet number (=Re ⋅Pr), dimensionless

Pr Prandtl number ð¼ c
kmðV0

d Þ
n−1Þ, dimensionless

q0 surface heat flux, W m−2

Re Reynolds number (=ρdnV02−n/m), dimensionless
r radial coordinate, m
T fluid temperature, K
TC temperature of the inlet fluid, K
TH temperature on the surface of the sphere, K
V0 average velocity, m s−1

z axial coordinate, m

Greek letters
λ blockage ratio (=d/D), dimensionless
ρ fluid density, kg m−3

θ angular position on the sphere surface, degree
ξ temperature of fluid (=(T−TC)/(TH−TC) for CWT, =

(T−TC)/q0d/k for CHF), dimensionless

Acronyms
CWT constant wall temperature
CHF constant heat flux
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