Risk-averse personalities have a systemically potentiated neuroendocrine stress axis: A multilevel experiment in *Parus major*

Alexander T. Baugh a,⁎, Rebecca A. Senft a, Marian Firke a, Abigail Lauder a, Julia Schroeder b, Simone L. Meddle c, Kees van Oers d, Michaela Hau e,f

a Department of Biology, 500 College Avenue, Swarthmore College, Swarthmore, PA 19081, USA
b Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, SL5 7PY, Ascot, Berks, United Kingdom
c The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
d Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droverendasesteg 10, 6708 PB Wageningen, The Netherlands
e Evolutionary Physiology Group, Max Planck Institute for Ornithology, Eberhard-Guettner-Stra., 82319 Seewiesen, Germany
f Department of Biology, Universitätstrasse 10, University of Konstanz, Konstanz, Germany

A R T I C L E I N F O

Article history:
Received 25 January 2017
Revised 30 March 2017
Accepted 20 May 2017
Available online xxxx

Keywords:
ACTH
Behavioral syndromes
Corticosterone
Dexamethasone
Glucocorticoid receptor
HPA axis
Mineralocorticoid receptor
Negative feedback
Personality
Stress

A B S T R A C T

Hormonal pleiotropy—the simultaneous influence of a single hormone on multiple traits—has been hypothesized as an important mechanism underlying personality, and circulating glucocorticoids are central to this idea. A major gap in our understanding is the neural basis for this link. Here we examine the stability and structure of behavioral, endocrine and neuroendocrine traits in a population of songbirds (*Parus major*). Upon identifying stable and covarying behavioral and endocrine traits, we test the hypothesis that risk-averse personalities exhibit a neuroendocrine stress axis that is systemically potentiated—characterized by stronger glucocorticoid reactivity and weaker negative feedback. We show high among-individual variation and covariation (i.e. personality) in risk-taking behaviors and demonstrate that four aspects of glucocorticoid physiology (baseline, stress response, negative feedback strength and adrenal sensitivity) are also repeatable and covary. Further, we establish that high expression of mineralocorticoid and low expression of glucocorticoid receptor in the brain are linked with risk-taking behaviors and demonstrate that four aspects of glucocorticoid physiology (baseline, stress response, negative feedback strength and adrenal sensitivity) are also repeatable and covary. Novel evidence that neuroendocrine factors robustly explain a large fraction of endocrine and personality variation,

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Upon exposure to a social or environmental challenge, individuals within a population often differ consistently in their behavioral response (reviewed in Réale et al., 2007; Bell et al., 2009; Dall et al., 2012). Moreover, single behaviors (e.g. aggressiveness) are often linked within an individual with other behaviors (e.g. exploration; reviewed in Groothuis and Carere, 2005). These consistent individual differences and trait correlations are the basis for the concept of animal personality (similar to ‘coping styles’, ‘behavioral syndromes’), which has now been demonstrated in a wide variety of species (van Oers and Naguib, 2013). This research highlights the constraints on behavioral flexibility, on the independent evolvability of traits, and suggests that the mechanisms that underlie one particular behavior might subserve other behaviors (Réale et al., 2007).

The hypothesis that hormones serve as mechanisms underpinning animal personality has been the subject of growing interest (Williams, 2008; Koolhaas et al., 2010). Glucocorticoids (hereafter CORT) are proposed to be key steroids involved in one of the major axes of personality: the shy-bold continuum (Overli et al., 2007; Carere et al., 2010). In part, this hypothesis rests on the pleiotropic nature of steroids—these endocrine products circulate throughout the organism and bind to multiple receptor types across diverse tissues. Hence, a single hormone can simultaneously affect multiple targets, thereby precisely modulating the expression of several behaviors (Ketterson and Nolan, 1999).

As the end products of the hypothalamic-pituitary-adrenal (HPA) axis, CORT facilitate critical functions in vertebrates: coping metabolically with the fluctuating demands of normal life, such as day-night rhythmicity, locomotor activity and predictable daily and life-history events (Landys et al., 2006). Further, the HPA axis is essential for coping with unpredictable, acutely challenging events, such as exposure to unfamiliar environments or objects (Lendvai et al., 2011), inclement
and exposure to conspecifics (Breuner and Hahn, 2003), predators (Cockrem and Silverin, 2002), but also sexual behaviors and social victory (Koolhaas et al., 2011). The regulation of the HPA axis consists of several components: First, low baseline concentrations fluctuate according to diel rhythms and metabolic demands and are known to promote feeding behavior (Dallman et al., 1993). Second, within a few minutes after an acute challenge is perceived, CORT (following an elevation of their upstream secretagogues such as adrenocorticotropic hormone, ACTH) becomes elevated and continues to rise in the blood until it reaches a peak, typically within 30–90 min (Baugh et al., 2013; Droste et al., 2011). At these stress-induced concentrations, CORT facilitates a metabolic shift from protein and fat synthesis towards gluconeogenesis by altering transcription in target cells (Gray et al., 1990; Hasselgren, 1999; Sapolsky et al., 2011). The regulation of the HPA axis consists of several components: (1) the regulation of baseline CORT, the stress response, negative feedback strength and adrenal sensitivity—will likewise vary and covary at the among-individual level; (2) the expression patterns of MR and GR in two regions of the brain that regulate the HPA axis (hippocampus and hypothalamus) will be correlated with HPA function, with higher GR expression predicted to strengthen negative feedback; and thus GR expression in these regions is predicted to correlate negatively with a systemically potentiated HPA axis (Romero, 2004); and (4) repeatable elements of the behavioral phenotype are correlated with repeatable elements of the endocrine phenotype; specifically, that birds with lower GR expression would express a consistently potentiated HPA stress axis and more risk-averse personalities.

2. Materials and methods

2.1. Animals

We used a repeated measures study design that included behavioral testing (N = 27; 15 females), plasma hormone assessment (N = 25; 13 females) and neural hormone receptor mRNA quantification (N = 25; 13 females); unequal sample sizes reflect the fact that two birds died of unknown causes between behavioral and hormonal assessments; Fig. 1). In 2009, we collected eggs from 14 nests (7 nests had clutch sizes of 1; 1 nest had a clutch size of 2; 6 nests had clutch sizes of 3) from an established nest box population (Westerheide, NL). Eggs were then distributed to unique and random wild foster parents to decouple nesting experience and relatedness among siblings. Because other maternal effects prior to hatching (e.g. yolk hormones) might influence the adult phenotype, we call this a 'nest of origin' effect (hereafter NestID) rather than strictly genetic relatedness. Ten days after hatching, fledglings were transported to the Netherlands Institute for Ecology (NIOO-KNAW, Heteren, NL) and hand-raised in captivity until nutritional independence.

In November 2010, the birds were transported by automobile to the Max Planck Institute for Ornithology-Radolfzell, where all experimental and laboratory work was conducted. After two weeks of quarantine, birds were housed singly in large outdoor aviaries (3 × 3 × 2 m high) in alternating male-female adjacencies (birds had audible but not visible contact). These captive conditions facilitated control of the social and nutritional environments—singly housed birds were fed an ad libitum diet and fresh water. Each aviary contained a elevated feeding platform, a nest box, hanging perches and live shrubs. Birds were acclimatized to these housing conditions for three months before testing began. We first characterized behavioral traits using three repeated samplings, and then characterized HPA axis function using two repeated measures sampling events, and lastly we sacrificed the birds to estimate the expression of hormone receptors in the brain (Fig. 1).

2.2. Behavioral testing

Twenty-seven birds were tested in a behavioral assay for object neophobia and risk-taking on three repeated occasions (RTA1–3; Fig. 1). Testing order was randomized with the exception that adjacent aviaries were never sampled on the same day and the two sexes were balanced each day. To ensure motivation and to habituate birds to feeding on the ground, each bird was restricted to three mealworms per day in a bowl centered on the floor of the aviary during a three-day window prior to testing. We tested a maximum of 7 birds per day during the morning (7:30–12:00). To habituate birds to the experimental set-up, we placed a camouflaged blind in front of each aviary at a distance of 3 m beginning 24 h prior to testing. The experimenter occupied the blind during the testing.

Our neophobia/risk-taking assessment was modified from a procedure previously validated as a measure of personality in this species.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات