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Immune Thrombocytopenia is an autoimmune disease associated with bleeding that is treated by increasing the
platelet count to a level where the chance of uncontrollable bleeding is low. Failure occurs when platelet counts
are not raised sufficiently (initial failure), or when high platelet counts are not maintained after initial success
(relapse). In this paper, we propose a Bayesian clinical trial design that uses a Markov multistate model along
with a power prior for the parameters which incorporates historical control data to estimate transition rates
among two randomized groups as defined by the model. A detailed simulation is carried out to examine the
operating characteristics of a trial to testwhether a new treatment reduces the relapse rate by 40% relative to stan-
dard carewhendata from60historical controls treatedwith standard care is available.We alsouse simulateddata
to demonstrate effects of discordance between historical and randomized controls on the estimated hazard ratios.
Finally, we use a simulated trial to demonstrate briefly what type of results the model can give and how those
results can be used to address hypotheses regarding treatment effects. Using simulated data, we show that the
model yields good operating characteristics when the historical and randomized controls are from the same
population, and demonstrate how discordance between the control groups affects the operating characteristics.
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1. Introduction

Immune Thrombocytopenia (ITP) is an autoimmune disease associ-
ated with bleeding. The bleeding is the result of impaired platelet pro-
duction that is often persistent and chronic and due to platelet
destruction by the immune system [5]. ITP treatment consists of two ob-
jectives: quickly raising the platelet count to a therapeutic level to stop
the ITP relating bleeding and maintaining the therapeutic platelet
level to prevent future ITP-related bleeding. Current treatment uses
established treatments to address the first objective, but clinicians
need improved treatments to reduce the risk of relapse among initial
treatment responders. To identify these improved treatments, clinical
researchers need efficient effect estimation models to properly account
for failure to meet either objective.

This article proposes a three-state Markov Bayesian model that can
incorporate historical control data if necessary to evaluate experimental
ITP treatmentswhile taking into account the two possible failuremodes
mentioned above. The multi-state nature of the model accounts for
these two types of failure. The Bayesian model allows for inclusion of
prior information and historical control data via the power prior of
Ibrahim and Chen [7]. Using simulation, we demonstrate how the

proposed Bayesian model can be used to estimate hazard rates and ra-
tios from ITP trial data, its power and type 1 error characteristics, and
how the model responds to differences between randomized and his-
torical control relapse rates.

The article is organized as follows. In Section 2, we describe a clinical
trial design that corresponds to the proposed three-stateMarkovmodel,
we describe the Bayesianmodel used to estimate the parameters of the
model, we describe the structure of the analysis dataset used in the
model, and we illustrate the simulation process used to study and illus-
trate the Bayesian model. In Section 3, we describe the simulation re-
sults, and in Section 4 we conclude the article with a discussion.
Financial funding for the research reported in this publication was
givenby theNational Heart, Lung, AndBlood Institute of theNational In-
stitutes of Health under AwardNumber U24HL114577. The sponsor had
no other role in the research beyond funding.

2. Methods

2.1. Trial design

The ITP trial design, forwhich the Bayesianmodel is used to estimate
treatment effects, consists of one active arm and one control arm, into
which patients are randomized at the time of enrollment using a 1:1
ratio. After enrollment, both arms are treated with a selected therapy
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intended to raise the platelet counts to therapeutic levels. One possible
outcome of this initial treatment is failure to respond. After this initial
treatment period, initial responders in both arms have their treatment
regimensmodified to allow for a comparison of at least one experimental
therapy with respect to ITP relapse rates. For example, responders in the
control armmight receive standard relapse prevention carewhile the ac-
tive armmight begin to take an experimental therapy intended to reduce
relapse rates relative to standard care. Using data collected from the trial
design, the Bayesian model is used to estimate initial and relapse failure
rates and hazard ratios, as well as response rates to the initial treatment.

Another part of the design involves the platelet assessment sched-
ule. Platelet levels are assessed periodically according to a pre-
specified schedule. If the primary outcome is time-to-relapse and re-
lapse is defined as timeuntil platelet levels are less than some threshold,
then the time-to-relapse will be interval censored. Therefore, the
Bayesian model also takes interval censoring into account.

2.2. Three-state model

As noted earlier, ITP treatment failure occurs in two ways. A subject
is an initial non-responder (an initial failure), if he or she does not expe-
rience therapeutically high platelet levels during initial treatments to
raise platelet levels. On the other hand, an initial responder can experi-
ence relapse if the initial responder experiences critically low platelet
levels at some later time. In order to accurately estimate the relapse fail-
ure rate, modelling needs to account for the possibility of initial failure,
initial nonresponse. If these two paths to failure are combined with an
initial state of critically low platelet counts, and a second state of initial
treatment response, then a three-state model identical to an Illness-
Death model can be used to accurately estimate the relapse failure
rate without confounding from the initial failure rate, Fig. 1 [3,13].

State 1 of the three-state model represents a patient's initial condi-
tion of critically low platelet levels. State 2 represents initial treatment
responders who have obtained a therapeutically high platelet count. A
subject can reach State 2 only from State 1, a “1–2” transition. State 3
represents treatment failure, and subjects can reach State 3 from States
1 or 2. First, a subject with a critically low platelet count could fail to re-
spond to initial treatment within a pre-specified period. This subject is
an initial non-responder and reaches State 3 from State 1, a “1–3” tran-
sition. Second, a subject could fail by relapsing to a critically low platelet
count after reaching State 2, a “2–3” transition. In an ITP trial that is eval-
uating a treatment for relapse, transitions rates between States 1 and 2
should be high and transition rates between States 1 and 3may be driv-
enmostly by treatment protocol with respect to the definition of an ini-
tial non-responder. A subject must be observed to occupy State 2 before
a “1–2” transition can be declared, and only subjects who are observed
to occupy State 2 can contribute to the estimation of 2–3 transition
model parameters. The proposed Bayesian model presented in this
paper can be used to estimate all six transition rates, three for each
arm, and all three hazard ratios.

2.3. Likelihood and priors for the randomized component of the Bayesian
trial design

The MCMCmodels used in this article are based on exponential dis-
tributions with the mean transition time equal to a function of treat-
ment. The likelihood function component for the 1–2 transition is
given in Eq. (1), where δj = 1 indicates whether or not the transition
time is interval censored, (t12Lk, t12Uk), δj =2 indicates a right censored
at an unknown value, [̂t13Lk, ∞], or δj = 3 indicates a right censored at a
known value [t12Lk, ∞]. An unknown 1–2 right censored time occurs
when an observed but interval censored 1–3 transition occurs. The
values t12Lk and t12Uk are left and right interval time points for an inter-
val censored 1–2 transition time similar to SAS's input structure for in-
terval censoring in PROC LIFEREG. In case of a right censored time

point, only one value is needed, so when δj =3 the value of t12Lk repre-
sents the exact timing of a right censored 1–2 transition time. The value
of t12Uk can be any value allowable by the estimation algorithm. Similarly,
when δj = 2 the value of t̂13Lk represents the predicted value of a 1–3
transition time, but due to competing risk between 1–2 and 1–3 transi-
tions t̂13Lk also is equal to the predicted time when the 1–2 transition
was right censored, A predicted right censored 1–2 transition time is
needed when a subject transitions out of State 1 into State 3, because
the transition timing into State 2 is right censored at an unknown
value. The 1–3 transition time is interval censored, so the right censored
transition time for the 1–2 transition is only known to occurwithin an in-
terval. In such a case the present model predicts the unknown right cen-
soring time for the 1–2 transition by making a random draw from a
truncated version of 1–3 transition timedistribution. The μ12k is the expo-
nential mean for the kth subject [11]. The parameter μ12k is linked with
the treatment variable by the log link, log(μ12k) = β120 + β121Trtk,
where Trtk equals 1, if subject k is in the active arm and 0 otherwise.

L12 ¼ ∏
n

k¼1
exp −

t12Lk
μ12k

� �
− exp −

t12Uk
μ12k

� �� �δk¼1

exp −
t̂13Lk
μ12k

� �� � δk¼2

exp −
t12Lk
μ12k

� �� � δk¼3

ð1Þ

In summary: using a convention similar to the SAS convention for
representing interval censoring, if the subject experienced a 1–2 transi-
tion within the interval (t12Lk, t12Uk), then δj equals 1. If the subject was
right censored at an unknown value due to an observed but interval
censored 1–3 transition, then the transition interval is represented by
(t̂13Lk, C) and δj will equal 2, where t̂13Lk is a predicted value of when
the 1–3 transition occurred and C is some arbitrary value larger than
the possible maximum follow-up time. This C value was necessary
given the JAGS 4.2fitting algorithmused to estimate parameter posterior
distributions. If the subjectwas right censored at a knownvalue, then the
transition interval is represented by (t12Lk, C) and δj equals 3, where C is
some arbitrary value larger than the possible maximum follow-up time.

Due to competing risks among 1–2 and 1–3 transitions, the likelihood
function component for the 1–3 transition is similar to the likelihood
function for the 1–2 transition and is given in Eq. (2), where δj indicates
transition type, log (μ13k)= β130+ β131Trtk, and t13Lk, t13Uk, and t̂12Lk are
defined in a similarmanner as t12Lk, t12Uk, and t̂13Lk. In the case of interval
censored 1–3 transition, the values t13Lk and t13Uk, are left and right end-
points of a 1–3 transition. In the case of right censoring at a known value,
t13Lk is equal to the known timing of the right censoring. In the case of
right censoring at an unknown value, t̂12Lk is equal to the predicted
timing of a 1–2 transition which due to competing risks is equal to the
predicted time of a right censored 1-3 transition time.

L13 ¼ ∏
n

k¼1
exp −

t13Lk
μ13k

� �
− exp −

t13Uk
μ13k

� �� �δk¼1

exp −
t̂12Lk
μ13k

� �� � δk¼2

exp −
t13Lk
μ13k

� �� � δk¼3

ð2Þ

To estimate the 1–2 transition and 1–3 transition rates using the
Bayesian model, priors need to be placed on β120, β121, β130, and β131.
In this paper, non-informative N(μ=0,σ=100) priors are used.

Since t̂12Lk and t̂13Lk are predicted values, predictive distributions
need to be identified for t̂12Lk and t̂13Lk . The values of t̂12Lk will be
drawn from a truncated version of the model's estimated exponential
distribution for the 1-2 transition times, since the censoringmechanism
for the 1-3 transition is equal to the 1-2 transition mechanism. For t̂12Lk
the truncation will be driven by subject specific left and right values of
the observed interval censored 1-2 transition. For t̂13Lk the truncation
will be driven by subject specific left and right values of the observed in-
terval censored 1-3 transition. Given the assumption of exponential
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