
Combining concept lattice with call graph for impact analysis q

Bixin Li a,b,⇑, Xiaobing Sun a,b, Hareton Leung c

a School of Computer Science and Engineering, Southeast University, Nanjing, China
b State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
c Department of Computing, Hong Kong Polytechnic University, Hong Kong, China

a r t i c l e i n f o

Article history:
Received 12 May 2012
Received in revised form 12 June 2012
Accepted 1 July 2012
Available online 3 August 2012

Keywords:
Formal concept analysis
Change impact analysis
Call graph
Impact factor
Hierarchical impact results
Case study

a b s t r a c t

Software change impact analysis (CIA) is a key technique to identify unexpected and potential effects
caused by software changes. Given a changed entity, most of current CIA techniques compute the change
effect composed of some potentially impacted entities. The generated results are often of no help to the
maintainers in starting the analysis of impacted entities. In this article, we combine concept lattice with
call graph together to obtain a ranked list of potentially impacted methods from the proposed changed
methods and/or classes. These impacted methods are ranked based on the hierarchical feature of concept
lattice, represented by an impact factor, which can then be used to prioritize these methods to be
inspected. Case studies based on four real-world programs show that our approach can improve the pre-
cision of the impact result without severely decreasing its recall, when compared with results from either
concept lattice or call graph used independently. In addition, the predicted impacted methods with
higher impact factor values are also shown to have higher probability to be affected by the changes.
Our study also shows that our approach is better than the JRipples CIA approach in removing the
false-positives, but at the cost of losing more false-negatives and much more time overhead.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Software change is unavoidable and contributes to the high cost
of software maintenance. Lehman and Belady proposed and refined
five laws that characterize the dynamics of program evolution, in
which the first law is – change is continual [31]. Changes can be
stemmed from new requirements, fixing existing faults, change re-
quests, etc. When changes are made to software, they often produce
some unexpected and potential ripple effects to other parts of the
software. Software change impact analysis (CIA), often simply
called impact analysis, is an approach used to identify such potential
effects caused by changes made to software [11]. CIA starts with a
set of changed elements in a software system, called the change
set, and attempts to determine a possibly larger set of elements,
called the impact set, which requires attention or maintenance ef-
fort due to these changes [11]. The change set is often identified
using the feature location technique [40,17]. Programmers use fea-

ture location to find where in the source code the initial change
needs to be made [17]. The full extent of the change is then deter-
mined by CIA, which contains a collection of techniques for deter-
mining the effects on other parts of the software due to proposed
changes [33]. CIA plays an important role in software development,
maintenance, and regression testing [11,12,42,56]. CIA can be used
before or after a change implementation. Before making changes,
we can employ CIA for program understanding, change impact pre-
diction and cost estimation [11,12]. After changes have been imple-
mented, CIA can be applied to trace ripple effects, select test cases,
and perform change propagation [42,56,9,41].

The accuracy of CIA can be determined by its resulting impact
set, which often contains some false-positives (i.e., the elements
in the estimated impact set are not really impacted) and false-neg-
atives (i.e., some of the real impacted elements are not identified in
the impact set). A good CIA should provide an accurate impact set
with few false-positives and false-negatives. The commonly used
CIA techniques can be categorized into static CIA and dynamic CIA
techniques. Static CIA techniques often analyze the dependencies
of the program (or its change history repositories), construct an
intermediate representation (e.g., call graph), and then conduct
analysis based on these representations [52,47]. The resulting im-
pact set often has too many false-positives [30]. Thus it is not suit-
able for practical use [30,33]. Whereas dynamic CIA techniques
consider part of the inputs, and often rely on the analysis of the
information collected during the execution (e.g., execution traces

0965-9978/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2012.07.001

q This work is supported partially by National Natural Science Foundation of
China under Grant No. 60973149, partially by the Open Funds of State Key
Laboratory of Computer Science of Chinese Academy of Sciences under Grant No.
SYSKF1110, partially by Doctoral Fund of Ministry of Education of China under
Grant No. 20100092110022, and partially by the Scientific Research Foundation of
Graduate School of Southeast University under Grant No. YBJJ1102.
⇑ Corresponding author.

E-mail addresses: bx.li@seu.edu.cn (B. Li), sundomore@seu.edu.cn (X. Sun),
cshleung@comp.polyu.edu.hk (H. Leung).

Advances in Engineering Software 53 (2012) 1–13

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2012.07.001
mailto:bx.li@seu.edu.cn
mailto:sundomore@seu.edu.cn
mailto:cshleung@comp.polyu.edu.hk
http://dx.doi.org/10.1016/j.advengsoft.2012.07.001
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


information, coverage information) to calculate the impact set
[30,35,5]. The resulting impact set often includes some false-nega-
tives [33].

Given a change set, most of current CIA techniques compute the
impact set composed of a set of potentially impacted entities. This
presents two challenges to maintainers. First, as all the entities in
the impact set are assumed to be equally affected, software main-
tainers do not know which impacted entities should be inspected
first. Second, the impact result may contain many false-positives
that will waste the maintainers’ effort in analysis. But in practice,
some entities in the impact set are really affected and need corre-
sponding modifications while some others may be false-positives,
which are over-estimated by the CIA technique. Hence, a better CIA
technique should compute an impact set that includes the proba-
bility of being affected associated with each potentially impacted
entity and also achieves a higher precision over traditional CIA
techniques, that is, the impact set has fewer false-positives.

In this article, we propose a new CIA technique to solve these
challenges. Our CIA technique combines concept lattice [18] with
call graph [32] to compute a ranked list of impact set for method
and/or class changes. Given class or method changes, our proposed
CIA consists of the following four steps:

(1) All proposed changes (method changes or class changes) are
mapped to class-level changes to facilitate the class-level
impact analysis.

(2) Concept lattice is used to predict class-level changes.
According to the inherent hierarchical feature of concept lat-
tice, a ranked list of potentially impacted methods are gen-
erated. Each method in the generated impact set is
assigned an impact factor (IF) value, which represents its
probability to be affected by these class changes.

(3) Call graph is used to predict the impact set of the method-
level changes. This step removes the methods which are
not dependent on the changed methods from the impact
set obtained in Step 2.

(4) The intersection of the two sets obtained from Step 2 and
Step 3 gives the final impact set. The methods in this final
impact set are also labeled with the IF values.

The main contributions of this article are as follows:

� We provide a combined approach based on concept lattice and
call graph that can remove more false-positives over these two
standalone approaches.
� From case studies on four real-world programs, it is shown that

our CIA approach improves the precision of the impact set with-
out severely decreasing its recall, when compared to other two
standalone approaches.
� The case studies also show the usefulness of the impact factor

metric. Impacted methods with higher impact factor values
have a lower probability of belonging to false-positives.
� Finally, the accuracy of our CIA approach is empirically com-

pared with the JRipples approach, and the results show that
our approach has better precision but a little worse recall and
more time overhead.

The rest of the article is organized as follows: in the next sec-
tion, we provide the background of formal concept analysis and
call graph, and the precision and recall measure to assess the CIA
technique. In Section 3, we present the analysis method of concept
lattice and call graph to support CIA. In Section 4, we conduct some
case studies to validate the effectiveness of our technique. Then,
some related work of CIA techniques and applications of FCA in
software maintenance are introduced in Section 5. Finally, we pres-
ent our conclusion and future work in Section 6.

2. Background

We first introduce some basic knowledge about concept lattice
and call graph, two common representations of a system. Then, we
will discuss two measures from information retrieval [57], namely
precision and recall, used to compare the accuracy of CIA techniques.

2.1. Formal concept analysis

Formal Concept Analysis (FCA) is a field of applying mathematics
based on the schematization of concept and conceptual hierarchy
[18]. FCA is used to study the relation between entities and entity
properties to infer a hierarchy of concepts [18]. The basic notions of
FCA include formal context and formal concept, which are defined as
follows:

Definition 1. ½Formal Context� A formal context is defined as a triple
K ¼ ðO;A;RÞ, where R is a binary relation between a set of formal
objects O and a set of formal attributes A. Thus R#O�A.

Definition 2. [Formal Concept] A formal concept is a maximal col-
lection of formal objects sharing common formal attributes,
defined as a pair (O,A) with O #O; A #A; O ¼ sðAÞ and A = r(O),
where sðAÞ ¼ fo 2 Oj8a 2 A : ðo; aÞ 2 Rg ^ rðOÞ ¼ fa 2 Aj8o 2 O :

ðo; aÞ 2 Rg.
s(A) is said to be the extent of the concept and r(O) is said to be

its intent. Relation between concepts often forms a partial order on
the set of all concepts. We often use subconcept to construct a con-
cept lattice [18]:

Definition 3. [Subconcept] Given two concepts (O1,A1) and (O2,A2)
of a formal context, (O1,A1) is called the subconcept of (O2,A2),
provided that O1 # O2 (or A1 � A2). We usually denote such
relation as: (O1,A1) 6 (O2,A2) () O1 # O2() A1 � A2

The set of all concepts of a formal context forms a partial order.
Birkhoff has found that it was also a complete lattice [8], defined as
follows.

Definition 4. ½Concept Lattice� The concept lattice LðCoÞ is a complete
lattice. LðCoÞ ¼ fðO;AÞ 2 2O � 2AjO ¼ sðAÞ ^ A ¼ rðOÞg, where infi-
mum and supremum of two concepts (O1,A1) and (O2,A2) are defined
as: (O1,A1) ^ (O2,A2) = (O1 \ O2,r(O1 \ O2)), and (O1,A1)
_ (O2,A2) = (s(A1 \ A2),A1 \ A2), respectively.

The complete information for each concept of LðCoÞ is given by
their extents and intents. However, if the concepts are all labeled
with such complete information, the lattice is really hard to under-
stand. Fortunately, there is a simple way to represent their extents
and intents in a more compact form. A lattice element is labeled
with a 2 A ðo 2 OÞ, if it is the most general (specific) concept having
a (o) in its intent (extent). The lattice element marked with a is [18]:

lðaÞ ¼ _fco 2 LðCoÞja 2 intentðcoÞg ð1Þ

In (1), intent(co) represents the intent of the concept co. And it
indicates that all concepts smaller than l(a) have a in its intent.
Similarly, the lattice element marked with o is:

Table 1
Formal context.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

C1 � � � � �
C2 � � � � � � �
C3 � � � �
C4 � �
C5 � � � � �
C6 � � � �

2 B. Li et al. / Advances in Engineering Software 53 (2012) 1–13



https://isiarticles.com/article/15510

