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a b s t r a c t

Air pollutant concentration forecasting is an effective method of protecting public health by providing an
early warning against harmful air pollutants. However, existing methods of air pollutant concentration
prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this
paper, a novel long short-term memory neural network extended (LSTME) model that inherently con-
siders spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-
term memory (LSTM) layers were used to automatically extract inherent useful features from histori-
cal air pollutant data, and auxiliary data, including meteorological data and time stamp data, were
merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an
aerodynamic diameter less than or equal to 2.5 mm) concentration data collected at 12 air quality
monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effec-
tiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep
learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average
(ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a
comparison of the results demonstrated that the LSTME model is superior to the other statistics-based
models. Additionally, the use of auxiliary data improved model performance. For the one-hour predic-
tion tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE)
of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved
satisfactory performance, even for 13e24 h prediction tasks (MAPE ¼ 31.47%).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Air pollution is a serious environmental problem that has
attracted increasing attention worldwide (Kurt and Oktay, 2010).
Certain air pollutants, such as PM2.5 (particulate matter with an
aerodynamic diameter less than or equal to 2.5 mm), can traverse
the nasal passages during inhalation and reach the throat and even
the lungs. Long-term exposure to ambient fine particulate matter
can negatively affect human health (Dockery et al., 1993; Iii et al.,
2002; Krewski et al., 2009) and cause respiratory and cardiovas-
cular diseases and some other illnesses (Kappos et al., 2004;
Neuberger et al., 2004; Wilson et al., 2005; Bravo and Bell, 2011).

Therefore, obtaining air pollutant concentration information in real
time is significant for air pollution control and the prevention of
health issues due to air pollution (Zheng et al., 2013).

In recent years, many research efforts have focused on enriching
approaches to predicting air pollutant concentrations. In general,
methods of predicting air pollutant concentrations fall into two
major categories: deterministic and statistical methods.

Deterministic methods adopt meteorological principles and
statistical methods to model the emission, dispersion, trans-
formation, diffusion and removal processes of pollutants based on
atmospheric physics and chemical reactions; thus, the spatiotem-
poral distributions of air pollutants are simulated at different scales
and orientations (Bruckman, 1993; Coats, 1996; Lurmann, 2000;
Guocai, 2004; Baklanov et al., 2008; Kim et al., 2010; Jeong et al.,
2011). These methods are viewed as model-based methods
because their structures are predefined based on certain theoretical
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hypotheses, and the parameters can be calculated via specific priori
knowledge. Many air quality models have been developed to
simulate the complicated process of air pollutant diffusion.
Representative methods, such as the Community Multiscale Air
Quality (CMAQ) model (Chen et al., 2014), Nested Air Quality Pre-
diction Modeling System (NAQPMS) (Wang et al., 2001) and WRF-
Chem model (Saide et al., 2011), are commonly adopted for air
pollutant concentration forecasting in urban areas. Although
developed theories provide valuable insights for understanding
pollutant diffusion mechanisms, most of these theoretical models
are relevant to sophisticated priori knowledge, unreliable and
limited data, and various usage constraints (Vautard et al., 2007;
Stern et al., 2008).

Statistical methods, however, avoid sophisticated theoretical
models and simply apply statistics-based models to predict air
quality. Widely used methods include the multiple linear regres-
sion (MLR) method (Li et al., 2011), the autoregressive moving
average (ARMA)method (Box and Jenkins,1976), the support vector
regression (SVR) method (Nieto et al., 2013), the artificial neural
network (ANN) method (Hooyberghs et al., 2005), and hybrid
methods (Díaz-Robles et al., 2008; Chen et al., 2013). Among these
models, the ANN method, which can perform nonlinear mapping
and is self-adaptive and robust, generally provides satisfying per-
formance; therefore, it has been widely used in time series fore-
casting fields (Yoon et al., 2011). Recently, various ANN structures
have been developed to improve predictions of air pollutant con-
centrations. Typical examples include the widely employed multi-
layer perceptron (MLP) (Paschalidou et al., 2011), back propagation
neural network (BPNN) (Kolehmainen et al., 2001), radial basis
function neural network (RBF NN) (Lu et al., 2002), neuro-fuzzy
neural network (NFNN) (Mishra and Goyal, 2016), general regres-
sion neural network (GRNN) (Antanasijevi�c et al., 2013), and
recurrent neural network (RNN) (Feng et al., 2011). Due to the dy-
namic nature of relevant atmospheric environments, RNNs are
particularly suited to capturing the spatiotemporal evolution of air
pollutant distributions because RNNs can handle arbitrary se-
quences of inputs, thereby guaranteeing the capacity to learn
temporal sequences (Ma et al., 2015). Certain RNNs, such as the
time delay neural network (TDNN) (Ong et al., 2016) and Elman
neural network (Prakash et al., 2011), have been used for air
pollutant prediction in previous studies. However, these RNN
models face two issues: 1) in the RNN structure, the time lag must
be determined in advance, which requires a considerable number
of experiments to identify the optimum time lag; and 2) traditional
RNNs fail to capture long time dependencies in input sequences,
and training RNNs with long time lags is difficult because vanishing
gradient and exploding gradient problems may be encountered
(Hochreiter and Schmidhuber 1997).

To resolve these issues, a special RNN architecture referred to as
a long short-term memory neural network (LSTM NN) was devel-
oped by Hochreiter and Schmidhuber (1997). Unlike traditional
RNNs, LSTM NNs are capable of learning long time series and are
not affected by the vanishing gradient problem. These features are
especially important for modeling spatiotemporal air pollutant
processes in which the air pollutant concentration of one station is
related to the previous status and those at nearby stations because
of pollutant transport processes.

In recent years, the LSTM NN has been successfully applied to
many studies involving time series prediction, such as traffic flow
prediction (Lv et al., 2015), wind power prediction (Felder et al.,
2010), human trajectory prediction (Alahi et al., 2016), etc.
Recently, Sak et al. (2016) (Sak et al., 2016) adopted the LSTMNN for
pollution risk prediction, but they only classified the pollution risk
ranking without conducting real-value predictions of air pollutant
concentrations. Moreover, they made predictions separately for

individual cities without considering the spatial correlations be-
tween monitoring stations. To the best of our knowledge, the LSTM
NN has not been applied in the domain of air pollutant concen-
tration prediction. This paper aims to extend the LSTM NN to
spatiotemporal correlation modeling and air pollutant concentra-
tion prediction.

The contributions of this paper are as follows: (1) an LSTMNN is
extended to capture the long-term spatiotemporal dependency of
air pollutant concentrations, and a multiscale prediction frame-
work which can forecast the air pollutant concentration over the
next 24 h is presented; (2) the proposedmethod can effectively and
automatically extract the spatiotemporal correlations within air
pollutant concentration data; and (3) auxiliary data are integrated
into a traditional LSTM NN model, and the integrated model ex-
hibits better performance than traditional methods.

2. Data and methods

2.1. Data description

Hourly PM2.5 concentration data from 12 air quality monitoring
stations in downtown Beijing collected from Jan/01/2014 to May/
28/2016 were obtained from the Ministry of Environmental Pro-
tection of China (http://datacenter.mep.gov.cn/). Concentrations
were measured using a Thermo Fisher 1405F detector and calcu-
lated based on the tapered element oscillating microbalance
(TEOM) method. Meteorological data from the same period were
downloaded from The National Oceanic and Atmospheric Admin-
istration's (NOAA's) national climate data center (https://www.
climate.gov/). In successive experiments, we chose four main fac-
tors from themeteorological dataset that are highly related to PM2.5
concentrations: temperature, humidity, wind speed and visibility
(Díaz-Robles et al., 2008; Saide et al., 2011; Guocai, 2004). Fig. 1
shows the distribution of the air quality monitoring stations (blue
triangles) and the location of the meteorological station (green
triangle). Simple linear interpolation was performed to fill in the
missing values in both datasets. Our dataset contained 20196 re-
cords for each station. In our experiment, we randomly selected 80

Fig. 1. Distribution of air quality monitoring stations in Beijing City.
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